Abstract:
A circuit includes a charge sensitive amplifier (CSA) that includes an input to receive current from a photon sensor and generates an output signal that represents photons received by the sensor and dark current of the sensor. A control circuit generates a compensation signal to offset the dark current from the photon sensor at the input of the CSA. The control circuit couples feedback from the CSA to enable the compensation signal if the photon current received from the sensor is below a predetermined threshold. The control circuit decouples the feedback from the CSA to disable the compensation signal if the photon current received from the sensor is above the predetermined threshold.
Abstract:
Utilizing a quench time to deionize an ultraviolet (UV) sensor tube are described herein. One method includes monitoring firing events within a UV sensor tube, where a particular firing event initiates arming the UV sensor tube, initiating a quench time to deionize the UV sensor tube, where the quench time includes, disarming the UV sensor tube to prevent a firing event.
Abstract:
The present invention provides a light-driven retina chip capable of receiving a signal light and a background light, including: an array of photodiodes and a plurality of background light eliminating units. The array of photodiodes includes a plurality of photodiodes and a plurality of current amplifying circuits. The signal light is converted into an electric signal and the background light is converted into a plurality of background light currents. The photodiodes are correspondingly connected to the current amplifying circuits. The background light eliminating unit includes a plurality of background light sensing circuits and a plurality of current eliminating circuits. The current eliminating circuits are respectively and electrically connected to the photodiodes of the array of photodiodes. The background light currents generated by the photodiodes from the background light are eliminated by the background light eliminating units, thereby enhancing a dynamic range of the light-driven retina chip.
Abstract:
A method and apparatus for optical metrology is disclosed. There is disclosed, for example, a method involving a radiation intensity distribution for a target measured using an optical component at a gap from the target, the method including calculating a correction factor for the variation of radiation intensity of the radiation intensity distribution as a function of variation of the distance of the gap.
Abstract:
Utilizing a quench time to deionize an ultraviolet (UV) sensor tube are described herein. One method includes monitoring firing events within a UV sensor tube, where a particular firing event initiates arming the UV sensor tube, initiating a quench time to deionize the UV sensor tube, where the quench time includes, disarming the UV sensor tube to prevent a firing event.
Abstract:
A method to measure and report electromagnetic radiation power includes receiving electromagnetic radiation and generating an electrical signal having a magnitude based on the power of the electromagnetic radiation. An adjustable gain may be applied to the electrical signal to generate an amplified electrical signal that may be sampled to generate a digital sample. The adjustable gain may be controlled based on the value of the digital sample and the digital sample may be associated with a gain value. One or more calibration factors may be selected based on the gain value associated with the digital sample and the selected calibration factor(s) may be used to calculate the power of the electromagnetic radiation.
Abstract:
Provided is a optical transceiver module. The optical transceiver module includes a printed circuit board (PCB) configured to include a plurality of dielectric layers and a plurality of metal layers stacked alternately, a photodetector disposed on the PCB to convert an optical signal into an electrical signal, a compensator disposed on one side on the PCB and including a first transmission line that delivers an electrical signal, a power supply line configured to supply power to the photodetector, and a first high frequency connector configured to connect to the first transmission line to deliver the electrical signal, wherein the PCB includes a plurality of vias that electrically connect the plurality of dielectric layers and the plurality of metal layers, and the compensator protrudes from the PCB to compensate for a height difference from the photodetector.
Abstract:
A photoelectric conversion device includes a pixel cell including a phototransistor, a reference cell including a reference transistor having a temperature characteristic identical to that of the phototransistor and having a fixed electrical state, an analog-to-digital converter that converts an analog output of the pixel cell into a digital output, a correction amount computation unit that computes a correction amount for the digital output of the analog-to-digital converter based on an output of the reference cell and a reference value, and a correction unit that corrects the digital output of the analog-to-digital converter based on the correction amount.
Abstract:
A UV exposure dosimetry system includes at least one UV sensor that accurately measures the UV irradiance intensity. The UV dosimetry system integrates the measured UV irradiance intensity over time to calculate the real-time UV dosage and the vitamin D production by taking into account factors comprising UV sensor location, body surface area, clothing coverage, and sunscreen usage. Based on the measurement, the system can predict the time remaining to skin burn and the time remaining to reach daily goal of vitamin D production. The system also calculates the UV index in real-time, and can crowd source the measured data in a network. The UV dosimetry system supports multi-user control through an advanced and user friendly input and output interface.
Abstract:
An optical sensor device includes a light emitter for emitting, to a living body, lights having two wavelengths and blinking at a predetermined frequency, and a light receiver for receiving the lights from the living body. The light receiver outputs first and second detection signals corresponding to the respective wavelengths. A filter circuit extracts, from the first and second detection signals, modulation signals that are obtained with amplitude modulation of signals of the predetermined frequency. The modulation signals are amplified by a post-amplifier and are taken into an arithmetic processing unit after being converted to digital signals by an AD converter. The arithmetic processing unit calculates DC components and AC components of the first and second detection signals by employing the modulation signals converted the digital signals.