Abstract:
Color measuring systems and methods such as for determining the color or other characteristics of teeth are disclosed. Perimeter receiver fiber optics are spaced apart from a central source fiber optic and receive light reflected from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the color measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base.
Abstract:
RGB filter set and color estimation performance for RGB LED color sensing is provided. A criteria function describing an error between desired color matching functions and a spectral response of an RGB filter set is constructed. RGB filter set response characteristics based on the criteria function are then determined. Finally, color estimation parameters for substantially optimal color estimation with the RGB filter set are determined based upon the determined RGB filter set response characteristics. Computer readable code for constructing a criteria function is provided. Computer readable code for determining RGB filter set response characteristics is also provided. Finally, computer readable code for determining color estimation parameters is provided.
Abstract:
Method and apparatus for duplicating a target color and changing a color of an object to match the target color. A first color sensor measures the target color. A color projection mechanism selectively changes the color of the object. A color matching mechanism is coupled to the first color sensor for receiving the target color. Based on the target color, the color matching mechanism controls the color projection mechanism to change the color of the object to match the target color.
Abstract:
A computer implemented method and system for determining the formula or formulas of haircoloring agents to be used in the process of coloring hair, including the steps of receiving input on the current color, state, and desired color of the hair, and using a database of haircoloring formulas to determine the coloring agents to be used, quantities of such coloring agents, application time of such coloring agents, and refreshing options that can be applied to the hair to treat and correct faded hair ends. The computer in some embodiments is portable, and includes a processor, an electronic storage means in which the haircolor formula database is stored, and software that defines the process by which the correct haircolor formula is determined. The computer software determines the best formula and process steps to be taken to achieve the desired haircolor.
Abstract:
In evaluating whiteness of light from a light source or a luminaire, whiteness W is given by the following equation, W=−5.3C+100, wherein chroma C is determined by the CIE 1997 Interim Color Appearance Model (Simple Version).
Abstract:
Method for defining the color group of an LED which emits mixed-color, in particular white, light. The CIE color space is divided by means of a network with two sets of intersecting network lines, one set being provided by a set of Judd straight lines and the other set by the line for the color loci of a Planckian radiator and also the associated lines of constant threshold value deviation, so that the network has a plurality of network cells bounded by network lines. The color locus of the LED is determined, and the network cell is determined in which the color locus of the LED is located. The LED is assigned to the color group of the network cell.
Abstract:
What is disclosed is a method for maintaining consistent color output across printers even when the inline sensors have differences in accuracy due to various technical and environmental factors. A spectrophotometer is used to measure the color quality of printed references. Adjustments are then iteratively made until reference charts of desired color quality are obtained. The printed reference allows one to achieve relatively high system performance by removing sensor inaccuracies. Using the printed reference measured by the inline sensor control systems of each machine are calibrated. At customer sites and at suitable intervals, a reference document can be read using the inline sensor on a reference machine and any differences from expected values can be calibrated out. The present method is also applicable to other color management functions such as memory color and automatic profile generations using inline/offline sensors and can be used for determining reference values while calibrating control systems of printers over a wide range of applications.
Abstract:
Optical feedback for controlling color of light from a light source is provided. Incident optical energy of the light is detected as a function of discrete steps of wavelength. For each discrete step of wavelength, an X, Y and Z tristimulus subvalue is produced. All the X, Y and Z tristimulus subvalues for all the discrete steps are summed together to produce an X, Y and Z tristimulus value for the light. The X, Y and Z tristimulus values are used as feedback in controlling color of the light generated by the light source.
Abstract:
A two dimensional color pattern which at each point has a definite and unique color value is reproduced on a measurement surface by way of a computer controlled display device for the optical marking of a target region on the measurement surface captured by a color measuring device. The color measuring device is aimed at the measurement surface and the color value of the target region captured by the color measuring device is measured. The coordinates of the target region on the measurement surface are calculated from the measured color value and an optical marker which visually indicates the location of the target region on the measurement surface is reproduced at that location on the measurement surface as defined by the calculated coordinates of the target region. Alignment of the color measurement device is simplified and made possible without the need for laser pointers or cameras.
Abstract:
The invention relates to a method for restoration of a patient's tooth. An electronic image of a patient's tooth or tooth preparation is generated in a dentist's office by the dentist. The image includes color information of the tooth preparation or of the patient's tooth shade. The electronic image is forwarded to a dental laboratory by direct computer link or e-mail. A technician at the laboratory evaluates the image and suggests restorative options to the dentist, including whether further tooth preparation is required. The technician also selects the appropriate restoration tooth shade(s) so that the dental prosthesis matches the color of the patient's tooth. The laboratory then manufactures the prosthesis utilizing a plurality of porcelain coatings. If desired, an image of the prosthesis can be generated in the laboratory and forwarded to the dentist for verification of color and/or fit prior to finalizing manufacture of the prosthesis.