Abstract:
Systems and methods of optimizing communication channels in multi-user communication systems are provided. Coding weights are determined based on communication channel state information for communication channels between a transmitter and multiple receivers. The coding weights are applied to communication signals to be transmitted from the transmitter to the receivers. Each receiver decodes received signals using inverses of the coding weights. Embodiments of the invention support multi-user MIMO (Multiple Input Multiple Output) where each receiver has fewer antennas than the transmitter, and enhance system performance if the total number of antennas at all of the receivers exceeds the number of antennas at the transmitter.
Abstract:
A multi-level space time signal constellation that is optimized for use with a multi-carrier, multi-path communication scheme includes points on a first level separated from points on a mutually exclusive second level by a minimum distance that is based on a conditional probability distribution, preferably a Kullback-Leibler (KL) distance. Points within one level may be separated by a Euclidean distance, but spherical levels are rotated relative to one another to maximize a minimum inter-level KL distance. A receiver uses pilot symbols to estimate the channels and two-stage symbol detection, determining in one stage the constellation level and in another stage the point in the level. The receiver calculates a likelihood function based on a conditional distribution which does not reduce to the Euclidean-based nearest-neighbor detector. A single stored constellation may be scaled based on received signal to noise ratio. Each constellation defines n=2M real dimensions, wherein M is the number of transmit antennas.
Abstract:
A technique for improving multiple-channel multi-tone transmissions is disclosed. According to one particular embodiment, a method for transmitting data over at least two bonded channels is provided, wherein each of the at least two bonded channels comprises a plurality of tones. The method may comprise: transmitting a first symbol stream over a first tone in a first bonded channel and over a second tone in a second bonded channel, wherein the first tone is bonded to the second tone, and the transmissions over the first tone and the second tone are substantially in parallel; transmitting a second symbol stream over a third tone in the first bonded channel; and transmitting a third symbol stream over a fourth tone in the second bonded channel, wherein the third tone is bonded to the fourth tone, and the transmissions of the second symbol stream and the third symbol stream are substantially in parallel.
Abstract:
A method and system for processing information data in a wireless communications system for reducing the complexity in spatial multiplexing of signals over different transmit antennas. In orthogonalized spatial multiplexing with the resolution of one, encoded data are interleaved and converted into a plurality of parallel sub-streams. Each sub-stream is then spreaded with a user specific spreading code with an intentional delay offset of few chips prior to modulating the encoded data for transmission. Likewise, in orthogonalized spatial multiplexing with the resolution of two, encoded data are interleaved and converted into a plurality of parallel sub-stream pairs. Each sub-stream pair is spreaded pairwise with a user specific spreading code with an intentional delay offset of few chips.
Abstract:
Disclosed is a signal transmitting and receiving method and system in a mobile communication system provided with a plurality of antennas. The signal transmitting method in the mobile communication system that transmits a signal through a plurality of antennas includes separating by layers and primarily encoding input data for an independent signal generation interleaving in space and time the primarily encoded data of the respective layers, receiving and secondarily encoding the interleaved data, and transmitting the secondarily encoded data through the plurality of antennas.
Abstract:
A method and apparatus for improving performance in communication systems is provided. In one implementation, initial encoded data that has been encoded with a rateless code is received. A quality metric is determined for a communication medium on which the initial encoded data has been received. A modulation scheme used in sending the initial encoded data on the communication medium is identified. An estimate is determined, based on the identified modulation scheme and the determined quality metric, of an amount of mutual information being received per unit of received encoded data. An amount of mutual information being received is determined, based on the determined estimate.
Abstract:
Transmission of uplink control message for a wireless system. The uplink control message may be encoded according to one of multiple possible schemes. The choice of encoding scheme may be made based on the control message size and/or based on the available transmission resources and/or based on the detection scheme used on the receiving end. A modulation scheme may also be selected based on such factors. CDM may be used for certain control messages. Block code encoding, such as Reed-Muller encoding may be used for certain control messages. Different transmission resources may be allocated for different control message uses. The encoding specifics may be selected to obtain a certain hamming distance and/or size of the encoded message or based on other factors.
Abstract:
Systems and methods for OFDM channelization are provided that allow for the coexistence of sub-band channels and diversity channels. Methods of defining diversity sub-channels and sub-band sub-channels are provided and systematic channel definition and labeling schemes are provided.
Abstract:
A transmitter apparatus wherein a relatively simple structure is used to suppress burst errors without changing the block sizes of encoded blocks even when the number of modulation multi-values is increased. An encoding part subjects transport data to a block encoding process to form block encoded data. A modulating part modulates the block encoded data to form data symbols; and an arranging (interleaving) part arranges (interleaves) the block encoded data in such a manner that the intra-block encoded data of the encoded blocks, which include their respective single different data symbol, get together, and then supplies the arranged (interleaved) block encoded data to the modulating part. In this way, there can be provided a transmitter apparatus wherein a relatively simple structure is used to suppress burst errors without changing the block sizes of encoded blocks even when the number of modulation multi-values is increased.
Abstract:
A wireless device with multiple antennae and configured to support orthogonal frequency-division multiplexed (OFDM), multiple-input multiple-output (MIMO) communications of a wireless local area network (LAN) over a wireless communication medium on a communication channel. The wireless device comprises: a MIMO demapper configured to receive a packet on the communication channel and to perform both linear together with non-linear decoding processes based on an initial communication channel estimate ‘H’, and with initial linear decoding of at least a first received symbol in a payload portion of the received packet followed by decoding of remaining symbols in the packet using non-linear sphere decoding, thereby reducing a level of complexity associated with non-linear decoding by extending a time interval available for an initial channel estimate decomposition portion of non-linear sphere decoding to span at least a portion of a n interval associated with linear decoding of at least the first received payload symbol.