Abstract:
A display device includes a display panel including a substrate having a display area and a non-display area outside the display area, a display unit being in the display area, and a plurality of pads in the non-display are, a sealing unit covering the display unit, and a circuit board including a plurality of terminals electrically coupled to the plurality of pads. The circuit board has a plurality of folding portions such that the circuit board is folded at least two times in directions different from each other.
Abstract:
A single flexible printed circuit (FPC) board for connecting multiple modules including a thin film is provided. The thin film has a first module connecting portion, a second module connecting portion and a third module connecting portion. The first module connecting portion is located on a first side of the thin film. The second module connecting portion and the third module connecting portion are located on a second side of the thin film. The first side is opposite to the second side. At least one first line is disposed between the first module connecting portion and the second module connecting portion. At least one second line is disposed between the first module connecting portion and the third module connecting portion.
Abstract:
A method of manufacturing a display device includes preparing a display panel that has a display region where an image is displayed and a non-display region adjacent to the display region, and disposing a power supply flexible printed circuit board (FPCB) in a lower surface of the display panel and in the non-display region of an upper surface of the display panel. The method includes disposing a tape on the display panel to cover an upper side of the power supply FPCB disposed on the upper surface of the display panel, and attaching the tape to the display panel by performing a thermal hardening process on the tape to fix the power supply FPCB to the display panel.
Abstract:
Methods to systematize the development of machines using inexpensive, fast, and convenient fabrication processes are disclosed. In an embodiment, a folding pattern and corresponding circuit design can provide the blueprints for fabrication. The folding pattern may be provided (e.g. laser machined) on a flat sheet of substrate material, such as a polymer. The circuit pattern may be generated by etching or applying (e.g. sputtering) a copper foil layer onto the substrate. Circuit components and actuators may then be added at specified locations. The flat substrate may then be folded along the predefined locations to form the final machine. The machine may operate autonomously to perform a task.
Abstract:
Disclosed is a double-side-conducting flexible-circuit flat cable with cluster section, which includes a flexible circuit substrate, a first electrical conduction path, a second electrical conduction path, a plurality of first and second conductive contact zones. The flexible circuit substrate has a first surface and a second surface and includes, in an extension direction, a first connection section, a cluster section, and at least one second connection section. The cluster section is composed of a plurality of clustered flat cable components formed by slitting in the extension direction. The first and second electrical conduction paths are respectively formed on the first and second surfaces of the flexible circuit substrate and each extends along one of the clustered flat cable components of the cluster section. The plurality of first and second conductive contact zones are respectively arranged on the first and second surfaces of the flexible circuit substrate at the first connection section. Each of the first and second conductive contact zones extends along one of the electrical conduction paths of the cluster section toward the second connection section.
Abstract:
A liquid crystal display device having a touch panel and a front window which can enhance reliability thereof and facilitates repair thereof is provided. The touch panel and the front window are mounted on a liquid crystal display device using a thermoplastic adhesive material. Electronic parts are arranged on a lower side of a touch-panel-use flexible printed circuit board, and electronic parts are arranged on a lower side of a main flexible printed circuit board. The respective electronic parts are covered with the front window in a plan view. A light emitting diode is mounted on the main flexible printed circuit board, and faces a light guide plate in a resin mold. Due to such a constitution, an external shape of the liquid crystal display device can be made small as a whole, and relatively expensive light emitting diodes can be reproduced and reused by repair.
Abstract:
A sensing structure is provided. The sensing structure includes a first substrate, a second substrate, a sensing unit, and a flexible printed circuit (FPC). The sensing unit is disposed on the first substrate and adapted to generate a signal when the sensing unit is touched. The FPC has a first end and a second end. The first end includes a first connecting portion and a second connecting portion. The first connecting portion is disposed on the first substrate and electrically connected to the sensing unit, and the second connecting portion connects to the second substrate.
Abstract:
The present invention is directed to an optical pick-up apparatus used for recording/reproduction of an optical disk, which comprises an optical pick-up (17) caused to undergo feed operation in the radial direction of optical disk (2), and for performing write or read operation of information signals with respect to the rotating optical disk, and a flexible printed wiring board (45) having one end portion (45a) connected to the optical pick-up, and the other end portion (45d) provided in a manner extended in the feed direction of the optical pick-up. The flexible printed wiring board includes a folded portion (45g) folded back toward the bottom surface portion side of the optical pick-up, and a bending displacement portion (45h) for allowing folded position of the folded portion to undergo displacement in a manner following the feed operation of the optical pick-up, wherein a slit (47) for escaping a projected portion (17b) projected from the bottom surface portion of the optical pick-up is provided at the folded portion.
Abstract:
A wiring board includes a base, plural wiring patterns provided on the base, and plural connection patterns which extend from the wiring patterns, respectively, and which reach an outer periphery of the base. The wiring patterns are provided at an inner side of the outer periphery of the base. This wiring board can be manufactured easily and inexpensively and can securely prevent the short circuit between the wiring patterns.
Abstract:
A touch panel includes an upper substrate, a lower substrate, and a wiring board. The upper substrate includes an upper conductive layer, a pair of upper electrodes, and upper electrode terminals. The lower substrate includes a lower conductive layer, a pair of lower electrodes extending orthogonal to the upper electrodes, and lower electrode terminals. The wiring board includes a substrate portion, L-shaped upper and cover sheets. The substrate portion has upper and lower wiring patterns on its top and bottom surfaces, respectively. The upper wiring patterns are connected to each of the upper electrode terminals, and the lower wiring patterns are connected to each of the lower electrode terminals. At least part of the top surface of the upper wiring patterns is covered with the upper cover sheet, and at least part of the bottom surface of the lower wiring patterns is covered with the lower cover sheet.