Abstract:
Electronic devices to output signals at different frequencies are mounted to a circuit board that has a group of layers, where the group of layers include reference plane layers and signal layers between the reference plane layers. A first signal layer has conductive traces having a first dimension to communicate the signals at a first frequency, and a second signal layer has conductive traces having a second, different dimension to communicate signals at a second, different frequency. The first and second signal layers are successive layers without any reference plane layer in between the first and second signal layers.
Abstract:
The present invention discloses a printed circuit board, a semiconductor package having the same, and a method for manufacturing the same. A printed circuit board according to an aspect of the present invention includes: a package board including a mounting area and a peripheral area, the mounting area having a semiconductor chip mounted therein, the peripheral area surrounding the mounting area; a first central circuit pattern formed in the mounting area on one surface of the package board; a second central circuit pattern formed in the mounting area on the other surface of the package board and having a greater thickness than the first central circuit pattern; a first peripheral circuit pattern formed in the peripheral area on the one surface of the package board; and a second peripheral circuit pattern formed in the peripheral area on the other surface of the package board and having a greater thickness than the second peripheral circuit pattern.
Abstract:
A layout for simultaneously sub-accessible memory modules is disclosed. In one embodiment, a memory module includes a printed circuit board having a plurality of sectors, each sector being electrically isolated from the other sectors and having a multi-layer structure. At least one memory device is attached to each sector, the memory devices being organized into a plurality of memory ranks. A driver is attached to the printed circuit board and is operatively coupled to the memory ranks. The driver is adapted to be coupled to a memory interface of the computer system. Because the sectors are electrically-isolated from adjacent sectors, the memory ranks are either individually or simultaneously, or both individually and simultaneously accessible by the driver so that one or more memory devices on a particular sector may be accessed at one time. In an alternate embodiment, the printed circuit board includes a driver sector electrically isolated from the other sectors and having a multi-layer structure, the driver being attached to the driver sector.
Abstract:
A circuit module includes a circuit substrate, a mount component, a sealing body, and a shield. The circuit substrate includes a mount surface. The mount component is mounted on the mount surface. The sealing body is formed on the mount surface, covers the mount component and has a trench formed from a main surface of the sealing body to the mount surface. The trench includes side walls configured of a first side wall at a mount surface side and a second side wall at a main surface side. A straight line connecting the first point and the second point has a second slope gentler than the first slope against the mount surface. The shield covers the sealing body and has an inner shield section formed within the trench and an outer shield section disposed on the main surface and the inner shield.
Abstract:
The invention relates to a method for manufacturing a printed circuit board (10) having a substrate (2) and an electric circuit (8), in particular for a rear view device of a motor vehicle, the method comprising the following steps: manufacturing a plurality of substrate parts (2a, 2b); and selecting at least two of the substrate parts (2a, 2b), and connecting the selected substrate parts (2a, 2b) and providing the connected substrate parts (2a, 2b) with the circuit (8).
Abstract:
There is provided a circuit module and a method of producing the same where interlayer wirings of a circuit substrate are prevented from damaging by laser irradiation, and a shield is assuredly electrically connected to the superficial conductor of the circuit substrate. The circuit substrate includes mount components, a sealing body, and a shield. The circuit substrate is a multi-layer substrate on which interlayer wirings are formed, and includes a mount surface on which a superficial conductor is disposed. The mount components are mounted on the mount surface. The sealing body is formed on the mount surface, covers the mount component and has a trench including a first trench section reaching the superficial conductor and a second trench section not reaching the superficial conductor. The shield has an outer shield section and an inner shield section.
Abstract:
An object is to provide a control board, an inverter device, and an integrated-inverter electric compressor that are capable of improving electromagnetic compatibility (EMC property) and improving reliability against input/output of electromagnetic noise, which shows a tendency towards greater complexity and intensity. A control board to which two power systems, that is, a low-voltage power system and a high-voltage power system, are inputs, comprising a low-voltage circuit and a high-voltage circuit, and a low-voltage-side ground region and a high-voltage-side ground region that are formed in correspondence with the circuits, respectively, wherein frame ground regions are provided at a plurality of positions on the control board, and a plurality of communication line patterns connected to the low-voltage circuit are respectively connected to both the low-voltage-side ground region and the frame ground region through capacitance elements with various capacitances.
Abstract:
A structural body includes: a first conductor and a second conductor of which at least portions are opposite to each other; a third conductor, interposed between the first conductor and the second conductor, of which at least a portion is opposite to the first conductor and the second conductor, and has a first opening; an interconnect provided in the inside of the first opening; and a conductor via which is electrically connected to the first conductor and the second conductor and is electrically insulated from the third conductor, wherein the interconnect is opposite to the first conductor and the second conductor, one end thereof being electrically connected to the third conductor at an edge of the first opening and an other end thereof being formed as an open end.
Abstract:
An improved method for producing a PCB assembly requiring at least two different encapsulants is disclosed. The PCB assembly may have two or more separate regions in which electronic devices are attached. In each region, a unique encapsulant with different mechanical, electrical, physical and or chemical properties is used according to the particular requirements of the electronic devices in that region.
Abstract:
Provided is a technique capable of improving isolation characteristics between a plurality of signal paths through which RF signals pass, without using ground electrodes or the like. Wiring electrodes 10a and 20a through which RF signals do not pass simultaneously are formed so as to be adjacent to each other in a central region of a component mounting surface 2a of a circuit board 2, and wiring electrodes 11a and 21a through which RF signals pass simultaneously are formed so as to be distanced from transmission paths 10 and 20. Accordingly, the RF signals do not simultaneously pass through the transmission paths 10 and 20, which are disposed near each other, and thus there is no risk that the RF signal passing through one of the signal paths will interfere with the RF signal passing through the other signal path.