Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A device is provided for adhering cells in a specific and predetermined position. The device comprises a plate defining a surface and a plurality of cytophilic islands that adhere cells which are isolated by cytophobic regions to which cells do not adhere and further is contiguous with the cytophilic islands. The islands or the regions or both may be formed of a self-assembled monolayer (SAM). Further, the cytophobic regions are wide enough such that less than 10 percent of the cells adhered to the cytophilic islands are allowed to form bridges across the cytophobic regions and contact each other. The device is used in a method for culturing cells on a surface or in a medium and also for performing cytometry. Furthermore, the device is used in immobilization of cells at a surface and for controlling the shape of a cell.
Abstract:
The disclosed invention is a device for adhering cells in a specific and predetermined position. The device comprises a plate defining a surface and a plurality of cytophilic islands that adhere cells which are isolated by cytophobic regions to which cells do not adhere and further is contiguous with the cytophilic islands. The islands or the regions or both may be formed of a self-assembled monolayer (SAM). Further, the cytophobic regions are wide enough such that less than 10 percent of the cells adhered to the cytophilic islands are allowed to form bridges across the cytophobic regions and contact each other. The device is used in a method for culturing cells on a surface or in a medium and also for performing cytometry. Furthermore, the device is used in immobilization of cells at a surface and for controlling the shape of a cell.
Abstract:
Provided is an inexpensive microneedle array with little dimensional error that can control, with high precision, the amount of a predetermined component to be introduced to the inner part of the skin, and a production method for this microneedle array. A foundation that is insoluble or sparingly soluble in inner part of the skin is overlaid on a mold. A plurality of frustum-shaped protrusions, which are insoluble or sparingly soluble in the raw material liquid, provided on a first main surface of the foundation are fit into a plurality of cone-shaped recesses. The raw material liquid in the plurality of cone-shaped recesses dries and, as a result, a plurality of microneedles, which are dissolvable in the inner part of the skin, are fixed to tip surfaces of the plurality of frustum-shaped protrusions.
Abstract:
A method for fabricating three-dimensional microstructures is presented. The method includes: disposing a substantially planar reflow material between two molds; heating the reflow material while the reflow material is disposed between the two molds; and reflowing the reflow material towards the bottom surface of one of the molds by creating a pressure gradient across the reflow material. At least one of molds includes geometrics features that help to shape the reflow material and thereby form a complex three-dimensional microstructure.
Abstract:
A plurality of nanoparticles, a structure assembled therefrom, a method of forming the structure, including a plurality of particles where each particle of the plurality of particles is configured with a substantially predetermined shape and a largest dimension less than about 100 micrometers, and where each particle of the plurality of particles includes an opening through the particle.
Abstract:
The invention is directed to a patterned aerogel-based layer that serves as a mold for at least part of a microelectromechanical feature. The density of an aerogel is less than that of typical materials used in MEMS fabrication, such as poly-silicon, silicon oxide, single-crystal silicon, metals, metal alloys, and the like. Therefore, one may form structural features in an aerogel-based layer at rates significantly higher than the rates at which structural features can be formed in denser materials. The invention further includes a method of patterning an aerogel-based layer to produce such an aerogel-based mold. The invention further includes a method of fabricating a microelectromechanical feature using an aerogel-based mold. This method includes depositing a dense material layer directly onto the outline of at least part of a microelectromechanical feature that has been formed in the aerogel-based layer.
Abstract:
Injection molding is used to form microfluidic devices with integrated functional components. One or more functional components are placed in a mold cavity, which is then closed. Molten thermoplastic resin is injected into the mold and then cooled, thereby forming a solid substrate including the functional component(s). The solid substrate including the functional component(s) is then bonded to a second substrate, which may include microchannels or other features.
Abstract:
A fine metal structure having its surface furnished with microprojections of high strength, high precision and large aspect ratio; and a process for producing the fine metal structure free of defects. There is provided a fine metal structure having its surface furnished with microprojections, characterized in that the microprojections have a minimum thickness or minimum diameter ranging from 10 nanometers to 10 micrometers and that the ratio between minimum thickness or minimum diameter (D) of microprojections and height of microprojections (H), H/D, is greater than 1. There is further provided a process for producing a fine metal structure, characterized by comprising providing a substrate having a fine rugged pattern on its surface, applying a molecular electroless plating catalyst to the surface, thereafter carrying out electroless plating to thereby form a metal layer having the rugged pattern filled, and detaching the metal layer from the substrate to thereby obtain a fine metal structure furnished with a surface having undergone reversal transfer of the above rugged pattern.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.