Abstract:
An infrared sensor IC and an infrared sensor, which are extremely small and are not easily affected by electromagnetic noise and thermal fluctuation, and a manufacturing method thereof are provided. A compound semiconductor that has a small device resistance and a large electron mobility is used for a sensor (2), and then, the compound semiconductor sensor (2) and an integrated circuit (3), which processes an electrical signal output by the compound semiconductor sensor (2) and performs an operation, are arranged in a single package using hybrid formation. In this manner, an infrared sensor IC that can be operated at room temperature can be provided by a microminiature and simple package that is not conventionally produced.
Abstract:
Methods for generating a customized spectral profile, which can be used to generate a corresponding filter, lamp or other type of illuminant. A trial spectrum can be generated. A reference spectrum can be determined or otherwise obtained. A SOURCE spectrum can be determined or otherwise obtained. One or more optical indices can be calculated using the trial spectrum and one or more of the optical indices are optimized by varying the trial spectrum to generate the customized spectral profile. A radiation force parameter can be used to minimize unsafe build-up of light in spectral regions. Adaptations of color rendering parameters can be used in the optimization process. Smoothing parameters can be used to enable easier design of filter structures. A reflectance camera can be used to measure reflectance data at one or more pixels of a digital representation of an object to be illuminated.
Abstract:
An intelligent electronic device (IED) may be configured to detect arc flash events within a power system using stimulus measurements acquired by detection devices communicatively coupled to the power system. An arc flash event may be detected using a time-intensity comparison metric, such as an inverse time-over-stimulus metric, a cumulative stimulus metric, or the like. The stimulus may include electro-optical (EO) radiation produced in the vicinity of the power system, current measurements, or the like. The IED may detect an arc flash event if one or more of the stimulus types are indicative of an arc flash event. Responsive to detecting an arc flash event, the IED, or other protective element, may take one or more protective actions, such as issuing trip commands, or the like.
Abstract:
An auto darkening eye protection device including a shutter assembly, a control circuit, and a power supply. The control circuit includes a sensing circuit for sensing the occurrence of welding, and a delivery circuit to provide signals to the shutter assembly to cause the shutter assembly to transition to the dark state. The power supply supplying power to the control circuit and the delivery circuit. The power supply including a power regulation circuit, and a solar power supply supplying electrical power to the power regulation circuit and the sensing circuit. The power regulation circuit limiting the voltage of the solar power supply to a predetermined voltage to provide a stable reference voltage.
Abstract:
Gaseous neutral density (ND) filters are disclosed that produce a stream of gas to interact with and thereby attenuate a beam of extreme ultraviolet (EUV) radiation. The gaseous ND filter can be located in a system that receives the beam of EUV radiation from an EUV source and delivers the beam to a downstream EUV optical system, wherein the beam passes through the gaseous ND filter between the source and the optical system. The stream of gas used in the gaseous ND filter can be discharged at a supersonic velocity and the gas can be a single gas or a mixture of gases. An exemplary mixture of gases includes xenon and argon gases.
Abstract:
Scanning mirror based display system and method. A method comprises sampling a scanned light provided by a scanning mirror, converting the sampled scanned light into an electrical signal, analyzing the electrical signal to determine a position of the scanned light, and controlling the light source or the scanning mirror based on the analyzed electrical signal. The electrical signal based on the sampled scanned light may be used to ensure proper operation of the scanning mirror display system, such as determining failure of the scanning mirror, proper rendering of colors, determining whether the scanned light is following a desired scan path at a desired scan rate, and so forth.
Abstract:
An imaging system for use in a vehicle headlamp control system includes an opening, an image sensor, a red lens blocking red complement light between the opening and the image sensor, and a red complement lens blocking red light between the opening and the image sensor. Each lens focuses light onto a different subwindow of the image sensor. The imaging system allows processing and control logic to detect the presence of headlamps on oncoming vehicles and tail lights on vehicles approached from the rear for the purpose of controlling headlamps. A light sampling lens may be used to redirect light rays from an arc spanning above the vehicle to in front of the vehicle into substantially horizontal rays. The light sampling lens is imaged by the image sensor to produce an indication of light intensity at various elevations. The processing and control logic uses the light intensity to determine whether headlamps should be turned on or off. A shutter may be used to protect elements of the imaging system from excessive light exposure.
Abstract:
A high dynamic range integrated (HDRI) receiver includes a variable optical attenuator (VOA) for attenuating an incoming optical signal before the optical signal is directed to a photo-detector for conversion into an electrical signal. An optical block receives the optical signal from an optical fiber and includes optics for directing the optical signal to the VOA, and for directing the optical signal from the VOA to the photo-detector.
Abstract:
An anti-glare eye protection apparatus includes an anti-glare eye protection plate, an optical detector, an electromagnetic wave sensor, an electromagnetic wave detector, a user interface, a main controller, and a light transmittance controller. The electromagnetic wave sensor senses an electromagnetic wave generated by a welding or cutting torch using at least two coils. The electromagnetic wave detector compares a signal received through the electromagnetic wave sensor with a reference value. The user interface includes a display for selecting or displaying one of the optical and electromagnetic wave detectors. The main controller applies an electromagnetic wave detector activation signal to the electromagnetic wave detector as the optical detector starts optical detection and monitors changes in a received electromagnetic wave signal based on output of the electromagnetic wave detector. The light transmittance controller controls change in light transmittance of the eye protection plate according to a signal output from the main controller.
Abstract:
An auto darkening eye protection device including a shutter assembly, a control circuit, and a power supply. The control circuit includes a sensing circuit for sensing the occurrence of welding, and a delivery circuit to provide signals to the shutter assembly to cause the shutter assembly to transition to the dark state. The power supply supplying power to the control circuit and the delivery circuit. The power supply including a power regulation circuit, and a solar power supply supplying electrical power to the power regulation circuit and the sensing circuit. The power regulation circuit limiting the voltage of the solar power supply to a predetermined voltage to provide a stable reference voltage.