Abstract:
Apparatus, systems and methods for automatic screen calibration and color reproduction in a display system are disclosed including an apparatus comprising a remote control unit where the remote control unit is capable of measuring the luminous intensity of two displayed images individually, or the difference thereof, and where the remote control unit includes logic to determine measurement data corresponding to the difference in luminous intensity of the two images, the remote control including a transmitter to transmit the measurement data. The apparatus further includes video processing logic capable of modifying image data in response to the measurement data. Other implementations are disclosed.
Abstract:
The present invention transforms a device-dependent color value in a device-dependent color space of a display device to a device-independent color value in a device-independent color space. A first color value is determined in a perceptually linear color space by applying a matrix model to the device-dependent color value, the matrix model applying a tone curve correction and a tristimulus matrix to the device-dependent color value. A difference value is then determined in the perceptually linear color space, wherein the difference value is determined by applying a difference model to the device-dependent color value, and wherein the difference model models deviation of the matrix model from actual measurements of the display device. Next, the difference value and the first color value are added and the sum is transformed to the device-independent color space. Because the first value based on the matrix model is added to a difference value which accounts for deviation of the matrix model, the present invention can account for the channel interdependency prevalent in DLP display devices.
Abstract:
A monitor calibrator housing and mounting bracket for storing the housing in either the horizontal or vertical positions. The housing includes opposing, side, contoured, finger receptacles, and a suction cup at one end. The mounting bracket includes first and second parts. The first part includes a flat portion and a perpendicular U-shaped portion. The second, separate part is a curved member having a first recess for receiving a curved free end of the flat portion, and a portion of the suction cup, and a second recess for supporting a portion of the housing. When the calibrator is removed from a monitor, it can be placed in the first part, which rests horizontally on e.g., a desk top. In this position, the suction cup rests on the flat portion of the first part. The calibrator and the first mounting bracket can also be placed in the second mounting bracket part, which is removably connected to a vertical surface, such as a CRT side panel.
Abstract:
A system and method for autonomously testing display performance in which a scanning mechanism with a two-directional mobile gantry plate, a probe, and a controller automatically operate a test device to illuminate discrete areas of the display screen based on the detected screen size, correlate the tracking position of a measurement location on the display screen for each reading of an illuminated area in a dictionary, and perform one or more of a flicker test, a luminosity test, and a color state test at the determined locations.
Abstract:
A method for achieving a target white chromaticity value and a target white light output value on a display device includes measuring a chromaticity value of a first primary color, a chromaticity value of a first secondary color, and a chromaticity value of a second secondary color on the display device using a photometer. The method also includes measuring a current white chromaticity value and a current white light output value on the display device using the photometer. The method also includes generating a plot of a color gamut triangle based at least partially upon the measured chromaticity value of the first primary color, the measured chromaticity value of the first secondary color, the measured chromaticity value of the second secondary color, and the measured current white chromaticity value.
Abstract:
A color adjustment determination method is provided that includes forming a color adjustment image on a recording medium by moving a plurality of heads including a plurality of nozzles relative to the recording medium in a relative moving direction and ejecting liquid from the plurality of heads that are arranged in an orthogonal direction orthogonal to the relative moving direction, acquiring colorimetric values of a plurality of portions of the color adjustment image formed by the plurality of heads that are arranged at different positions in the orthogonal direction, calculating a color difference between at least two portions of the plurality of portions of the color adjustment image based on the colorimetric values of the plurality of portions, and determining whether at least one of the plurality of heads that have ejected the liquid requires adjustment based on the calculated color difference.
Abstract:
Color calibration of color image rendering devices, such as large color displays, which operate by either projection or emission of images, utilize internal color measurement instrument or external color measurement modules locatable on a wall or speaker. A dual use camera is provided for a portable or laptop computer, or a cellular phone, handset, personal digital assistant or other handheld device with a digital camera, in which one of the camera or a display is movable with respect to the other to enable the camera in a first mode to capture images of the display for enabling calibration of the display, and in a second mode for capturing image other than of the display. The displays may represent rendering devices for enabling virtual proofing in a network, or may be part of stand-alone systems and apparatuses for color calibration. Improved calibration is also provided for sensing and correcting for non-uniformities of rendering devices, such as color displays, printer, presses, or other color image rendering device.
Abstract:
A method, an apparatus and a system for testing optical characteristics of a display module are provided. The apparatus includes an input unit, configured to input a lighting command to a module lighting machine, and input a testing command to a color analyzer; a reading unit, configured to read the parameter values from the color analyzer after the input unit inputs the testing command to the color analyzer; a determining unit, configured to determine whether the optical characteristics of the display module conform to a preset standard according to the parameter values, which are detected by the color analyzer, read by the reading unit after testing for a preset number of times.
Abstract:
A method and a device for determining a yellowish level of a screen caused by pressing are provided. The method includes: acquiring chromaticity coordinates of a plurality of test points of the screen during a pressing test; processing the acquired chromaticity coordinates, so as to acquire a chromatic aberration between the test point with a maximum value of X or a maximum value of Y in the chromaticity coordinates and the test point with a minimum value of X or a minimum value of Y in the chromaticity coordinates; and comparing the chromatic aberration with a predetermined standard chromatic aberration, so as to determine whether the screen is qualified after the pressing test.
Abstract:
A photometric device (1) measuring light emitted from a measuring object such as a display (2) includes two types of filters including interference filters (20X, 20Y, and 20Z) and an LVF (21), a disk (22) supporting the interference filters and the LVF, a motor (23) rotatably drive the disk to cause the light emitted from the measuring object to scan the interference filters and the LVF sequentially, a photoreceptor (13) converting light passed through the interference filters and light passed through the LVF to an electrical signal, a photometric controller (14) outputting photometric information based on the electrical signal of the light passed through the interference filters and converted by the photoreceptor and the electrical signal of the light passed through the LVF and converted by the photoreceptor.