Abstract:
The invention relates to identifying not easily volatilized substances, in particular hazardous material, in a gas phase. A measurement cell and gas supply installations connected to the measurement cell are heated, and a plasmonic surface arranged in the measurement cell is temperature-controlled such that the plasmonic surface has a lower temperature than the measurement cell and the gas supply installations. The gas phase is guided through the gas supply installations into the measurement cell such that the gas phase reaches the plasmonic surface. Substances adsorbed out of the gas phase on the plasmonic surface are analyzed by an optical process. Surface-enhanced Raman spectroscopy or surface-enhanced infrared spectroscopy may be used. Selectivity can be increased by combining both methods. Selectivity can be additionally increased by using a gas detector, preferably an ion-mobility spectrometer. Thus the false alarm rate is reduced without a loss of time.
Abstract:
Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample.
Abstract:
Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample.
Abstract:
An efficient absorption spectroscopy system is provided. The spectroscopy system may be configured to measure solid, liquid or gaseous samples. Vacuum ultra-violet wavelengths may be utilized. Some of the disclosed techniques can be used for detecting the presence of trace concentrations of gaseous species. A preferable gas flow cell is disclosed. Some of the disclosed techniques may be used with a gas chromatography system so as to detect and identify species eluted from the column. Some of the disclosed techniques may be used in conjunction with an electrospray interface and a liquid chromatography system so as to detect and identify gas phase ions of macromolecules produced from solution. Some of the disclosed techniques may be used to characterize chemical reactions. Some of the disclosed techniques may be used in conjunction with an ultra short-path length sample cell to measure liquids.
Abstract:
An apparatus for analysis of a sample and in particular of a biological sample. The apparatus contains a microfluidic chip with dies, adapted to be selectively activated or deactivated by presence of target molecules in the biological sample. The apparatus further contains a light source to emit light for illumination of the microfluidic chip and an optical filter to allow passage of the light from the dies once activated or deactivated by the presence of the target molecules. A method for pressurizing a microfluidic chip is also disclosed, where a chamber is provided, the chamber is connected with the microfluidic chip and pressure is applied to the chamber.
Abstract:
Portable systems and methods for amplifying nucleotides and for detecting nucleotide sequences in a sample are provided. The portable instruments and methods use RPA techniques for DNA amplification and detect sample fluorescence in response to amplification and/or to the presence of specific DNA sequences.
Abstract:
A photo-acoustic gas sensor and methods for producing same, the gas sensor having a resonance body and a device for detecting a vibration of the resonance body, including a device for optically detecting the location of at least one partial surface of the resonance body, wherein the resonance body and the device for detecting a vibration are disposed on exactly one substrate, the resonance body is formed by at least one first recess of the substrate, and the substrate is a semiconductor material.
Abstract:
A cartridge and cartridge system for use in an apparatus for analyzing a sample are provided. The system has a plurality of cartridges for different applications for a multimode instrument. The cartridges are removably engaged with a cartridge support of the apparatus in a “plug-in” format such that one cartridge may be removed from the apparatus and another cartridge may be easily installed. The cartridge support includes a plurality of cartridge positions that receive cartridges concurrently. One of the cartridges may be a luminescence cartridge that includes an integrated detector that is movable toward and away from a sample carrier of the apparatus, and thus toward and away from a sample located at the sample carrier.
Abstract:
A cannabis product updated user feedback system and method that informs users of the anticipated psychological and physiological effects of a cannabis product. The system includes the creation of an effects graph associated with the cannabis product that may be distributed with the cannabis product or presented on a website. The effects graph includes one or more line graphs depicting the effects and interactions experienced by all reporting users of the product. The system includes a website in which the feedback information regarding a particular cannabis product is collected. The administrator of the website then reviews the feedback information and provides updated line graph data. Each line graph shows the intensity of user-reported effects graded from 0 to an upper limit on the y axis over a time presented on the x axis. The effects graph may include icons that visually portray what a user consumed and how they felt. By viewing the line graph, a user can anticipated the effects, the intensity, when they occur and the duration.
Abstract:
An efficient absorption spectroscopy system is provided. The spectroscopy system may be configured to measure solid, liquid or gaseous samples. Vacuum ultra-violet wavelengths may be utilized. Some of the disclosed techniques can be used for detecting the presence of trace concentrations of gaseous species. A preferable gas flow cell is disclosed. Some of the disclosed techniques may be used with a gas chromatography system so as to detect and identify species eluted from the column. Some of the disclosed techniques may be used in conjunction with an electrospray interface and a liquid chromatography system so as to detect and identify gas phase ions of macromolecules produced from solution. Some of the disclosed techniques may be used to characterize chemical reactions. Some of the disclosed techniques may be used in conjunction with an ultra short-path length sample cell to measure liquids.