Abstract:
For a suppressed breakage after a flip chip connection of a semiconductor device using a low-permittivity insulation film and a lead-free solder together, with an enhanced production yield, bump electrodes (2) are heated by a temperature profile having, after a heating up to a melting point of the bump electrodes (2) or more, a cooling in which a temperature within a range of 190 to 210° C. is kept for an interval of time within a range of 3 to 15 minutes, and a condition is met, such that 1.4
Abstract:
A method of manufacturing a circuit board that includes: forming a conductive relievo pattern, including a first plating layer, a first metal layer, and a second plating layer stacked sequentially in correspondence with a first circuit pattern, on a seed layer stacked on a carrier; stacking and pressing together the carrier and an insulator, such that a surface of the carrier having the conductive relievo pattern faces the insulator; transcribing the conductive relievo pattern into the insulator by removing the carrier; forming a conduction pattern, including a third plating layer and a second metal layer stacked sequentially in correspondence with a second circuit pattern, on the surface of the insulator having the conductive relievo pattern transcribed; removing the first plating layer and seed layer; and removing the first and second metal layers, can provide a circuit board that has high-density circuit patterns without an increased amount of insulator.
Abstract:
A method of manufacturing a coaxial trace (100) within a surrounding material (190) includes: providing a first substrate (191, 410) and a second substrate (192, 1010) composed of the surrounding material; forming a first portion (101, 601) of the coaxial trace in the first substrate; forming a second portion (102, 1001) of the coaxial trace in the second substrate; aligning the first portion of the coaxial trace with the second portion of the coaxial trace; and bonding the first portion of the coaxial trace to the second portion of the coaxial trace.
Abstract:
A chip-type electronic component built-in multilayer board includes a multilayer board including two or more layered dielectric layers and an inner conductor pattern, and a chip-type electronic component which is provided at the interface of the upper and lower dielectric layers and includes an external terminal electrode. The external terminal electrode is connected to an in-plane conductor provided at a interface via a first connection conductor extending along the chip-type electronic component in the lower direction from the interface of the upper and lower dielectric layers, and a second connection conductor extending along the chip-type electronic component in the upper direction from the interface of the upper and lower dielectric layers.
Abstract:
A semiconductor device includes a semiconductor chip mounted on a printed circuit board with a chip electrode being coupled to a board electrode via a bump electrode. An insulating resin layer including therein conductive particles is interposed between the bump electrode and each of the chip electrode and board electrode. The conductive particles couple together the bump electrode and the each of the chip electrode and the board electrode. The conductive particles and the bump electrode are deformed to have a flat shape due the stress applied between the semiconductor chip and the printed circuit board.
Abstract:
Disclosed herein are a transmission line of coaxial type and a manufacturing method thereof, capable of preventing a radiative signal loss of signal lines during transmission of an RF signal and removing signal interference between adjacent signal lines, thus allowing signal lines to be compactly arrayed during a manufacture of IC, and reducing a dimension of the IC. The transmission line of coaxial type includes grooves provided on a semiconductor substrate, a first ground layer, an electrically conductive epoxy coated on a flat part of the first ground layer except the grooves, second ground layers provided on the electrically conductive epoxy, a dielectric film provided at a position above the grooves and the second ground layers, a third ground layer provided on an upper surface of the dielectric film, and signal lines placed in spaces defined by the grooves and a lower surface of the dielectric film. In this case, the electrically conductive epoxy is coated on only contact surfaces of the first and second ground layers, and the signal lines are attached to the lower surface of the dielectric film.
Abstract:
A device and a method for bonding elements are described. A first solder ball is produced on a main surface of a first element. A second solder ball is produced on a main surface of a second element. Contact is provided between the first solder ball and the second solder ball. The first and second elements are bonded by applying a reflow act whereby the solder balls melt and form a joined solder ball structure. Prior to the bonding, the first solder ball is laterally embedded in a first layer of non-conductive material and the second solder ball is laterally embedded in a second layer of non-conductive material, such that the upper part of the first solder ball and upper part of the second solder ball are not covered by the non-conductive material. A third solder volume is applied on one or both of the embedded first or second solder balls, prior to the bonding.
Abstract:
In some embodiments a channel is formed by combining two imprinted subparts each made of printed circuit board material and the imprinted subparts are laminated to form a waveguide. Other embodiments are described and claimed.
Abstract:
In some embodiments a channel is formed in printed circuit board material, the formed channel is plated to form at least two side walls of a quasi-waveguide, and printed circuit board material is laminated to the plated channel using thermoset adhesive. Other embodiments are described and claimed.
Abstract:
In some embodiments a channel is formed by combining two imprinted subparts each made of printed circuit board material and the imprinted subparts are laminated to form a waveguide. Other embodiments are described and claimed.