Abstract:
A substrate of the present invention is provided with a plurality of parallel-arranged functional sections. First and second connecting sections are provided on both ends of the functional sections. Every two adjacent functional sections are separable from one another and are respectively connected with different connecting sections so that the substrate can be separated into two daughter substrates having identical areas. The two daughter substrates of the substrate can be processed simultaneously before separated from each other, thus saving the processing time. When used by a user, one daughter substrate can be used independently as a light source or the two daughter substrates can be used opposite to each other so that the functional sections of the two daughter substrates are staggered.
Abstract:
A circuit board for a brushless DC motor whose rotation is controlled based on data stored on a rewritable non-volatile memory of a micro-computer mounted on the circuit board includes a substrate defined by a plurality of a circuit areas and a non-circuit area. The circuit areas and the non-circuit area are connected by a plurality of conductive patterns. The micro-computer having the rewritable non-volatile memory is mounted on each of the circuit areas. The rewritable non-volatile memory is connected to writing terminals arranged on the non-circuit area by the conductive patterns. By connecting a program writer to the writing terminals and activating the program writer, data are written to the rewritable non-volatile memory of each of the circuit areas. After writing data, the circuit areas are detached from the substrate, and a plurality of circuit boards are manufactured.
Abstract:
A processing apparatus for processing a workpiece includes a router bit having a processing area for processing the workpiece; an actuator for moving the relative position of the router bit with respect to the workpiece so as to place a part of the processing area of the router bit in contact with the workpiece for processing the workpiece; an adjustment mechanism for adjusting the position of the router bit relative to the workpiece; a wearing detector for detecting wear of the processing area; and a controller for controlling the adjustment mechanism, upon detection of wear of the part of the processing area of the router bit, to make a different part of the processing area of the router bit contact with the workpiece during processing.
Abstract:
An egress lighting system which utilizes an efficient primary and emergency light source and complies with the NEC standards for emergency egress lighting. This invention combines two sets of LEDs onto a single circuit board to provide primary lighting and secondary emergency egress lighting while keeping the circuits of the primary and secondary lighting electrically separate or isolated.
Abstract:
A circuit board includes an electrically conductive sheet having an insulative coating surrounding the conductive sheet, with a surface of the insulative coating around an edge of the conductive sheet having an arcuate or rounded shape. At least one electrical conductor is conformally deposited on at least the rounded insulative coating around the edge of the conductive sheet and defined via photolithographic and metallization techniques. Each electrical conductor on the insulative coating thereon around the edge of the conductive sheet conforms to the arcuate or rounded shape of the insulative coating and, therefore, has an arcuate or rounded shape.
Abstract:
A retaining member for a circuit board array is provided. The retaining member includes an elongated support post having a first end and an opposite second end. A protrusion extends from the first end. The protrusion is configured to be received in a slot having side walls in a circuit board array. The support post is movable to move the protrusion within the slot from a first position wherein the protrusion is disengaged from the side walls of the slot to a second position wherein the protrusion engages the side walls of the slot to retain the circuit board array.
Abstract:
A rigid-flex PCB includes at least one rigid PCB (RPCB) and at least one flexible PCB (FPCB). Each RPCB has a connection section; first and second sections separately extended from two lateral edges of the connection section and having at least one FPCB bonding side each; and a weakening structure formed along each joint of the connection section and the first and second sections. Each FPCB has a bending section corresponding to the connection section on the RPCB; first and second sections separately extended from two lateral edges of the bending section and having at least one RPCB bonding side each corresponding to the FPCB bonding sides of the first and second sections of the RPCB. When a proper pressure is applied against the weakening structures, the RPCB may be easily bent broken at the weakening structures to remove the connection section therefrom.
Abstract:
The present invention relates to a green sheet for multi-layered electronics parts and a manufacturing method of a green chip using the same. The present invention provides a green sheet for multi-layered electronics parts including a green sheet; and an internal electrode formed on the green sheet and having a gap formed therein.Further, the present invention provides the manufacturing method of the green chip using the green sheet for the multi-layered electronics parts.
Abstract:
A ceramic member with high strength grooves and method of manufacturing same is disclosed. A heat ray may be used in combination with a blown gas to form grooves in the surface of the ceramic member while eliminating or minimizing depletion of a sintering aid. A high concentration of the sintering aid is formed in a surface region of the ceramic member extending a distance from the surface of the grooves into the ceramic member.
Abstract:
A method for manufacturing a rigid-flexible printed circuit boards includes following steps. Firstly, a flexible substrate is provided. Secondly, at least one slit is defined in the flexible substrate. Thirdly, a rigid substrate having a structure corresponding to the flexible substrate is provided. Fourthly, the flexible substrate is laminated to the rigid substrate to obtain a laminated substrate. Fifthly, part of the rigid substrate is removed. Sixthly, the laminated substrate is cut along an imaginary boundary line to remove waste portion of the laminated substrate. Thus, a rigid-flexible printed circuit board is obtained.