Abstract:
An LED package structure with standby bonding pads for increasing wire-bonding yield includes a substrate unit, a light-emitting unit, a conductive wire unit and a package unit. The substrate unit has a substrate body and a plurality of positive pads and negative pads. The light-emitting unit has a plurality of LED bare chips. The positive electrode of each LED bare chip corresponds to at least two of the positive pads, and the negative electrode of each LED bare chip corresponds to at least two of the negative pads. Each wire is electrically connected between the positive electrode of the LED bare chip and one of the at least two positive pads or between the negative electrode of the LED bare chip and one of the at least two negative pads. The package unit has a light-permitting package resin body on the substrate body to cover the LED bare chips.
Abstract:
A via conductor connected to a mounting electrode near a corner portion of a circuit substrate is provided in a position in a corresponding mounting electrode, located closer to the center of the circuit substrate. Thus, concentration of a stress in a portion of the via conductor is effectively reduced, and a break, a chip, or a crack is prevented from occurring to the circuit substrate. Even if the portion located closer to the corner portion of the mounting electrode is peeled from the circuit substrate, the electrical characteristics of the circuit module are secured because disconnection between the corresponding mounting electrode and the via conductor is prevented.
Abstract:
An electronic device may be provided with an organic light-emitting diode display with minimized border regions. The border regions may be minimized by providing the display with bent edge portions having neutral plane adjustment features that facilitate bending of the bent edge portions while minimizing damage to the bent edge portions. The neutral plane adjustment features may include a modified backfilm layer of the display in which portions of the backfilm layer are removed in a bend region. A display device may include a substrate, a display panel on the substrate having display pixels, and peripheral circuitry proximate the display panel and configured to drive the display pixels. A portion of the periphery of the substrate may be bent substantially orthogonal to the display panel to reduce an apparent surface area of the display device. The bent portion may include an electrode for communication with the peripheral circuitry.
Abstract:
A substrate including a first transmission line arranged to transmit electrical signals and including first and second traces and a first dielectric layer. The first and second traces are separated from each other by the first dielectric layer. A printed circuit board includes a first transmission line arranged to transmit electrical signals and including first, second, and third traces; and a first dielectric layer. The first and second traces are separated from the third trace by the first dielectric layer.
Abstract:
A circuit board includes a plurality of conductive layers, at least one group of vias, a number of second vias, at least one power supply element, and at least one electronic element. Each conductive layer includes a conductive portion. Both the first vias and the second vias are defined through the conductive layers and electrically connected each conductive layers. The at least one group of first vias surrounds the at least one power supply element. The second vias are arranged along the side of the conductive portion, and positioned between the power supply element and the electronic element. Current from a power supply element flows to the inner conductive layers through the group of surrounding first vias. Current transmission on each conductive layer continuously flows to another conductive layer having a lower resistance through the second vias during transmission.
Abstract:
The application discloses novel internal structures of energy conditioners, assemblies of external structures of energy conditioners and mounting structure, and novel circuits including energy conditioners having A, B, and G master electrodes.
Abstract:
A flex circuit package includes a package body enclosing an electronic component and a first surface of the substrate. Columns are physically and electrically connected to first traces of the substrate, the columns extending through the package body. A flexible circuit connector has first terminals connected to the columns. The flexible circuit connector further includes second terminals that provide an electrical interconnection structure for electrical connection to a second electronic component structure. By connecting the flexible circuit connector to the columns extending through the package body, special routing of traces of the substrate of the flex circuit package to provide an interface for the flexible circuit connector is avoided.
Abstract:
According to one embodiment, a semiconductor storage device is provided with a memory chip including a storage circuit, a controller chip that controls a memory chip, and a substrate having a first surface and a second surface opposing one another, on the first surface of which the controller chip is mounted. Further, the semiconductor storage device is provided with an external connection terminal formed on the second surface of the substrate, and resin that encapsulates the memory chip, the controller chip, and the substrate, includes a third surface and a fourth surface opposing one another, and has a predetermined mark directly printed only on the fourth surface that is adjacent to the second surface of the substrate.
Abstract:
A printed circuit board (PCB) includes first to fourth layers. A power supply is arranged on the first layer. An electronic component is arranged on the fourth layer. A first via and a second via extend through the PCB and are electrically connected to the electronic component. The PCB further includes third to seventh vias. A length of a transmission path of the current flows from the power supply to electronic component through the third via and the seventh via is almost the same as a length of a transmission path of the current flows from the power supply to the electronic component through the fourth to sixth vias.
Abstract:
A wiring board includes a metal cap pad that is arranged so as to surround a mounting position of an electronic component and is connected to an end portion of a metal cap, a power source plane that is connected to the electronic component through a connection member and has a gap, a ground plane that is connected to the electronic component through a connection member, and a plurality of conductive body elements that are repeatedly arranged so as to surround the connection members and the gap. The power source plane and the ground plane extend so as to include at least a part of an area that is surrounded by the plurality of conductive body elements and at least a part of an area facing the plurality of conductive body elements.