Abstract:
The method for producing a functional film includes a step of forming an organic film on a surface of a substrate and a step of forming an inorganic film by vacuum deposition on a surface of the organic film to produce the functional film. Prior to forming the inorganic film, a member contacts the surface of the organic film in a vacuum chamber at portions where the organic film does not exhibit its functions.
Abstract:
A method for finishing a repaired surface is described. The method includes wiping a sealer on the repaired surface to seal microporosity in the repaired surface, the sealer consisting essentially of a mixture of polymer, at least one filler, solvent, and optionally microspheres; and applying a top coat to the sealed surface without sanding the sealed surface, the top coat being free of visible pinholes. Sealers and tools for applying surface sealers are also described.
Abstract:
A method of forming a pattern and a manufacturing method of a liquid crystal display includes forming the pattern with a thin thickness by coating a pattern material on a printing roll using a nozzle, removing a surplus portion of the pattern material from the printing roll by using a plate, and transferring the pattern material remaining on the printing roll to a substrate to form the pattern.
Abstract:
An apparatus and method for coating a functional layer on a current collector with an active material layer thereon, the apparatus including a first roll and a second roll, the first roll and second roll being for advancing the current collector; a gravure roll, the gravure roll being configured to coat the functional layer on the active material layer; a thickness measurer, the thickness measurer being configured to measure at least one of a thickness of the active material layer and a sum thickness of the active material layer and the functional layer; and a controller, the controller being in communication with the thickness measurer and being configured to control a rotation speed of the gravure roll.
Abstract:
A method of bonding a substantially planar sheet material to a corrugated sheet material using an automated process the method characterized by the steps of a) applying adhesive in discrete amounts to the contact points of the corrugated sheet material, and b) holding the sheet materials together until a bond is formed between them.
Abstract:
A modular peptide design strategy wherein the modular peptide has two functional units separated by a spacer portion is disclosed. More particularly, the design strategy combines a hydroxyapatite-binding portion and a biomolecule-derived portion. The modular peptides have improved non-covalent binding to the surface of the HA-based materials, and are capable of initiating osteogenesis, angiogenesis, and/or osteogenic differentiation.
Abstract:
A system for coating a medical device comprises a transfer web, a metering web. The webs are each advanced in a downstream direction toward a gap defined by the advancing webs. A coating solution applicator is configured to apply a coating solution at a staging area at a position upstream of the gap. A medical device retaining mechanism is positioned at a coating application area of the transfer web, at a position downstream from the gap.
Abstract:
The present invention provides a bar coating method comprising the step of: weighing and applying a coating liquid by the bar with bringing the bar into contact with a continuously running web and supplying the coating liquid to an feed side of the web with respect to the bar to form a coating liquid puddle, wherein a plurality of coating liquids are supplied to the feed side of the web with respect to the bar via a plurality of slits formed in a multistage form in an feed direction of the web in order to apply the coating liquid having a high viscosity or low wettability without problems.
Abstract:
The present invention relates generally to compositions, methods of use and kits for use as an automotive protectant composition and/or automotive cleaning composition. The protectant composition and/or cleaning composition comprises at least one surfactant and at least one rheology modifier, at least one silicone component, and water. The composition also optionally comprise, pH adjusters, builders, alkalinity sources, wetting agents, spreading agents, UV absorbers. The protectant composition has a viscosity of about 4000 to 6000 cps and exhibits a Vertical Cling parameter of between 1 and about 7 at a temperature of about 25° C. on automotive surfaces to which the compositions are applied.
Abstract:
A method for intermittently applying thin-film coatings is realized, by which a coating of extremely thin film reduced to 20 μm or less in thickness is deposited intermittently with high productivity and at the same time, the trailing coating edge of the thin film is formed in a highly accurate shape having good linearity. This is achieved as follows. A band-shaped substrate (1) traveling in one direction is kept looped over a stationary reference-roller (4) and a movable actuation roller (7), and is brought into contact with an application roller (19) which carries a coating agent (18) on its circumferential surface and rotates in a direction opposite to the direction of travel of the substrate (1). The actuation roller (7) is moved to come into or out of contact with the substrate (1) with a predetermined timing. A tension roller (8) is also controllably moved to come into or out of contact with the substrate (1), following the actuation roller (7) coming into or out of contact with the substrate (1), so that the tension applied to the substrate (1) is kept constant all the time.