Abstract:
A template based process is used for the production of the nanowire structural element, wherein the nanowires are electrochemically depositioned in the nanopores. The irradiation is carried out at different angles, such that a nanowire network is formed. The hollow chamber-like structure in the nanowire network is established through the dissolving of the template foil and removal of the dissolved template material. The interconnecting of the nanowires provides stability to the nanowire structural element and an electrical connection between the nanowires is created thereby.
Abstract:
A capacitance type physical quantity sensor includes: a first substrate; and a second substrate bonded to the first substrate through an insulating film. The second substrate includes first and second groove portions at a place of the second substrate facing an end portion of the first and second support units formed on the first substrate on a side opposite to the movable unit. A part of the end portion of the first support unit protrudes over the first groove portion. A part of the end portion of the second support unit protrudes over the second groove portion.
Abstract:
Embodiments of the invention provide a multi-axis sensor, including a first sensor embedded in an embedded substrate to sense a position, and a second sensor formed on a lower cap substrate bonded on the embedded substrate by a wafer level package scheme to sense an inertial force.
Abstract:
A sensing device comprises a substrate having an upper surface, a sensor member, at least an external conductive wire, and a standing-ring member. The sensor member, the external conductive wire and the stand-ring member are on the upper surface. The sensor member is located at the central area on the upper surface, and the standing-ring member surrounds the sensor member. The standing-ring member and the sensor member are electrically connected through the at least an external conductive wire.
Abstract:
Methods for fabricating multi-sensor microelectronic packages and multi-sensor microelectronic packages are provided. In one embodiment, the method includes positioning a magnetometer wafer comprised of an array of non-singulated magnetometer die over an accelerometer wafer comprised of an array of non-singulated accelerometer die. The magnetometer wafer is bonded to the accelerometer wafer to produce a bonded wafer stack. The bonded wafer stack is then singulated to yield a plurality of multi-sensor microelectronic packages each including a singulated magnetometer die bonded to a singulated accelerometer die.
Abstract:
Disclosed herein is a micro electro mechanical systems (MEMS) sensor module package. The MEMS sensor module package includes: an MEMS sensor; a base part formed so as to encapsulate the MEMS sensor with a resin; an external terminal provided on one surface of the base part; a through mold via (TMV) provided in the base part to electrically connect the external terminal and the MEMS sensor to each other; and an application specific integrated circuit (ASIC) stacked on the MEMS sensor. Compared to a MEMS sensor module package structure according to the prior art, the present invention is to reduce the entire size and implement electric shielding.
Abstract:
An optical-microwave-quantum transducer can include a tapered optical fiber configured to transmit and receive optical signals. The optical-microwave-quantum transducer can also include a cantilever that can include an optical cavity that includes a nanophotonic crystal. The optical cavity can be configured to provide mechanical excitation in response to electromagnetic excitation induced by photons emitted from the tapered optical fiber. The cantilever can also include a mechanical coupler that is configured to induce electrical modulation onto a superconducting cavity in response to the mechanical excitation. The mechanical coupler can also be configured to provide mechanical excitation in response to electromagnetic excitation induced by photons from the superconducting cavity. The optical cavity can further be configured to provide electromagnetic excitation that induces optical modulation on the tapered optical fiber in response to the mechanical excitation.
Abstract:
An integrated circuit includes a mechanical device for detection of spatial orientation and/or of change in orientation of the integrated circuit. The device is formed in the BEOL and includes an accommodation whose sides include metal portions formed within various metallization levels. A mobile metal component is accommodated within the accommodation. A monitor inside the accommodation defines a displacement area for the metal component and includes electrically conductive elements disposed at the periphery of the displacement area. The component is configured so as to, under the action of the gravity, come into contact with the two electrically conductive elements in response to a given spatial orientation of the integrated circuit. A detector is configured to detect an electrical link passing through the component and the electrically conductive elements.
Abstract:
A sensor device has a substrate, a sensor section provided on an upper surface of the substrate, a circuit section provided on the upper surface of the substrate, a plurality of connection pads that electrically conduct with the sensor section or the circuit section, and a metal protective film covering at least a part of the circuit section from above.
Abstract:
The invention concerns the production of segmented nanowires and components having said segmented nanowires.For the production of the nanowire structural element, a template based process is used preferably, wherein the electrochemical deposition of the nanowires in nanopores is carried out. In this manner, numerous nanowires are created in the template foil.For the electrochemical deposition of the nanowires, a reversed pulse procedure with an alternating sequence consisting of cathodic deposition pulses and anodic counter-pulses is carried out. By this means, segmented nanowires can be produced.