Abstract:
An object is to quantify the texture such as irregularity and gloss of a metal surface. Centers of Lab chromaticity distributions are identified (S145), and one of the Lab chromaticity distribution is entirely shifted (mapped) by deviations ΔA, ΔB and ΔL of a central coordinate, such that one of central coordinates of two distributions U1(L,a,b) and U2(L,a,b) matches with the other central coordinate (S146). A texture spread index that indicates a difference in spatial spread is then computed (S147). This configuration computes the spatial spread of the Lab chromaticity distribution in a three-dimensional space, and quantifies the irregularity of an inspection plane by diffraction phenomenon of illumination light. The difference in spread other than the color is applicable to evaluation of the irregularity of the metal surface or the like.
Abstract:
An unevenness inspection apparatus includes circuitry that is configured to obtain a pickup image of a test object and modify a chroma value of a pixel in the pickup image to correct a gain of the pickup image associated with the pixel for generating a color unevenness inspection image. The circuitry is configured to generate a luminance unevenness inspection image based on the pickup image and calculate an evaluation parameter using both of the color unevenness inspection image and the luminance unevenness inspection image. The circuitry is configured to perform unevenness inspection using the calculated evaluation parameter, which is calculated based on unevenness visibility for both color and luminance.
Abstract:
A color conversion processing apparatus that converts a signal value of an input image into an output value of an actual color material used in an image forming apparatus, and includes: an acquisition unit configured to acquire a printing setting for the input image; and a conversion unit configured to convert the signal value of the input image into the output value of the actual color material in accordance with the acquired printing setting, and the conversion unit performs the conversion while maintaining a relationship between the signal value of the input image and output values of a virtual color material, the number of virtual color materials is smaller than the number of actual color materials and the respective virtual color materials have respective densities corresponding to respective wavelength bands obtained by dividing a wavelength range reproduced by the actual color materials being output into a plurality of wavelength bands, the output values of the plurality of virtual color materials are determined based on the respective densities corresponding to the respective wavelength bands, and the relationship is a relationship that increases monotonically and whose secondary differential does not become negative.
Abstract:
A shade selection program is disclosed that predicts the shade choice with the smallest CIEDE2000 color difference for dental composite resin restorations when given a backing and target shade. By utilizing generated regression models, a database of spectral reflectance information, and principles of Kubelka-Munk layering, a highly accurate shade selection program was designed. Additionally, a blending model for quantification of color adjustment potential was developed. Systems and methods for correlating RGB data from the VITA Linearguide 3D Master and VITA Bleached Guide 3D Master shade guides with their spectroradiometric correlates through a regression model while indicating a methodology for validation of accuracy of digital imaging systems are disclosed.
Abstract:
A method for color mapping is disclosed based on obtaining a measurement of one or more characteristics of an imaging system. A set of color mappings are provided and the color mapping is selected based on the measurement. Each of the color mappings enables a mapping from a first color space to Neugebauer Primary area coverage vector space. A method for generating a color mapping is disclosed.
Abstract:
A color calibration device, a color calibration method thereof, a display apparatus and a display system having the same are provided. The color calibration device includes a storage configured to store at least one of characteristic information of a display screen that is measured by a color sensor, and color calibration information acquired by the color sensor; and a controller configured to calibrate a color of the display apparatus by using at least one of the characteristic information and the color calibration information.
Abstract:
The present invention discloses an image processing method includes steps of measuring stimulus value matrixes of trichromatic grays of a displaying image; calculating a stimulus value matrix of each pixel gray of the displaying image from the measured stimulus value matrixes; transforming the stimulus value matrixes of each pixel gray to coordinate values of each pixel in a color space; calculating a chromatic aberration between two adjacent pixels of each row and each column in the color space; selecting a pixel area and calculating a chromatic aberration value of the pixels in the selected pixel area and a chromatic aberration value between pixels of a periphery of the selected pixel area and the adjacent pixels out of the selected pixel area; executing an image process to the selected pixel area if a difference between these two chromatic aberration values and a preset chromatic aberration threshold value meets a predetermined rule.
Abstract:
Examples of an imaging sensor include a two-dimensional staring sensor with spectral filter strips for multispectral overhead imaging. The sensor may also include a panchromatic sensor with block or strip filters. The sensor may be used to collect multispectral color image data at a sampling resolution from overhead imaging platforms such as airplanes or satellites. The sensor can be used to provide video images. If a panchromatic sensor is included, the sensor may be used to collect panchromatic image data. Examples of methods for processing the image date include using the panchromatic image data to perform multi-frame enhancement or panchromatic sharpening on spectral images to improve their quality and resolution.
Abstract:
A method is provided for the quantitative determination of surface properties, wherein a spatially resolved image of a surface to be analyzed, which contains a large number of measured values, is recorded. In a first method step, the measured values are analyzed in order to determine those surface areas which have a specific physical property. A result value of this physical property is then determined, wherein this result value is characteristic of the values of the physical property of all those surface areas of the image determined by analyzing the image. In addition to the result value, a further value (B) characteristic of the surface is determined and this characteristic value is displayed together with the result value (I).
Abstract:
Provided are devices and methods for grouping light emitters and devices including the same. Embodiments of such methods may include selecting a portion of the light emitters using a region of a multiple axis color space that is configured to represent each of a plurality of colors as at least two chromaticity coordinates. The region may be proximate a predefined point on the multiple axis color space and includes a major axis having a first length and a minor axis having a second length that is less than the first length.