Abstract:
An optical device for examining a fluid including a measuring space including a compulsory passage for the fluid to be examined, at least one source delivering a selected light to an optical illuminator serving to collect at least part of the light having traversed the compulsory passage and to deliver the selected light to analyze the collected light so as to deliver signals representing data borne by the collected light. The optical illuminator includes a first light guide including one end, opposite the source, and configured to deliver the light, derived from the source, in accordance with a selected geometry to illuminate the compulsory passage in a substantially uniform manner and under a substantially constant intensity.
Abstract:
The apparatus for sensing plural gases is substantially a gas sensor adopting planar lightwave circuit for constructing reference optical path and sensing optical path, which is a flat structure with abilities of high accuracy, long-term stability, and short response time. The gas sensor can be widely applied for monitoring the safety of a working environment, securing the safety of workers, alerting potential hazard in a factory, inspecting harmful materials in a specific area, testing leakage of a pipeline, inspecting waste gas exhausted from automobile/motorcycle, and monitoring the living quality of household environment.
Abstract:
A machine comprises an enclosure; a plurality of parts within the enclosure; and a visual conduit for providing a view inside of the enclosure for detection of visible signs of failure of the machine. The concept of a visual conduit encompasses a broad variety of devices including cameras inside the enclosure that provide images of the interior of the enclosure and alternatively selective transparency or translucence of the enclosure relative to at least some of the parts of the machine housed within the enclosure.
Abstract:
A fuel injector for a gas turbine combustor is disclosed which includes a feed arm having a flange for mounting the injector within the combustor and a fuel nozzle depending from the feed arm for injecting fuel into the combustor for combustion. An optical sensor array is operatively associated with the fuel nozzle for observing combustor flame characteristics. The optical sensor array includes a plurality of sapphire rods positioned to be close enough to the combustor flame to oxidize soot deposits thereon.
Abstract:
A system and method for characterizing contributions to signal noise associated with charge-coupled devices adapted for use in biological analysis. Dark current contribution, readout offset contribution, photo response non-uniformity, and spurious charge contribution can be determined by the methods of the present teachings and used for signal correction by systems of the present teachings.
Abstract:
A monitoring device by laser shadowscopy, which comprises a light emitter (5) and receiver (6), mounted on an arm (8) oscillating at will around two joints (13, 14), in order to restore the image of the monitored profile more accurately.An important application relates to welding methods and especially in hollow beveled edges.
Abstract:
The present technology relates generally to fibre optic cables their manufacture and uses. The technology has useful applications e.g. in the field of optical measurements such as biochemical laboratory instrumentation for measuring properties of samples on microtitration plates and corresponding sample supports. The technology has also applications in various laser technologies. The object of the technology is achieved by providing a fibre optic cable wherein an active surface with a determined form is provided at a first optical interface at the first end (451a, 451b) of the cable. The first end of the cable is fused into an exemplary circular form, the fused cable end including fibre ends both within the active surface and outside the active surface. At the opposite, second end of the cable, those fibres which have their first ends at the determined active surface area, are used for forming a second optical interface (452a, 452b). This way it is possible to have high transmission efficiency in optical interfaces where other than circular cross section of the light beam exists.
Abstract:
The present invention relates to a method for quantifying the composition of a product, including: irradiating the product with a radiation source in the near infrared range; receiving radiation which is reflected by or transmitted through the product; providing an output signal corresponding to the intensity of the radiation received at a number of different wavelengths; and determining whether or not the product lies within predetermined integrity criteria on the basis of the output signal using a mathematical method. The moving product contains a solution or homogeneous dispersion and the content of at least one substance contained in the dispersion or solution is quantitatively determined on the basis of the output signal. The invention also relates to a device for carrying out this method.
Abstract:
An optical power control system for a semiconductor source spectroscopy system controls power fluctuations in the tunable signal from the spectroscopy system and thus improves the noise performance of the system. This general solution has advantages relative to other systems that simply detect reference power levels during the scan and then correct the detected signal after interaction with the sample by reducing the requirements for coordinating the operation of the sample detectors and power or reference detectors. The spectroscopy system comprises a semiconductor source and a tunable filter. The combination of the semiconductor source and tunable signal illuminate a sample with a tunable signal, being tunable over a scan band. The power control system comprises an amplitude detector system for detecting the power of the tunable optical signal and power control system for regulating the amplitude of the tunable optical signal in response to its detected power.
Abstract:
A method and apparatus for measuring isotherms and determining solid state phase changes comprising a humidity generator having a temperature controlled internal chamber, a microbalance mounted externally to the internal chamber and a near infrared spectroscopy (NIRS) probe or Raman spectrometer probe mounted internally in the internal chamber, such that the mass of a sample suspended within the chamber and its solid state phase can be determined without disturbing the controlled environment surrounding the sample. The humidity generator includes means for controlling humidity and temperature within the internal chamber, an access port that extends into the internal chamber. The balance is situated near the port such that the balance mechanism extends within the internal chamber. The balance mechanism utilizes a means for holding a sample within the chamber such that the mass of the sample can be determined as it equilibrates to the temperature and relative humidity maintained within the internal cavity. The NIRS probe extends from a NIR spectrometer. Similarly, the Raman probe extends from a Raman spectrometer.