Abstract:
An apparatus for arranging magnetic solder balls includes: a stage for placing and fixing the substrate thereon; a magnet which is incorporated in the stage and is movable in parallel with a lower surface of the placed and fixed substrate so as to cause a magnetic force to act in an upward direction of the stage; and a mask frame capable of being positioned above the stage. An arranging method using this arranging apparatus is also provided. An apparatus for arranging magnetic solder balls includes: a stage for placing and fixing the substrate thereon; a mask frame capable of being positioned above the stage; and a magnetic generator which is movable above the mask frame and causes a magnetic force to act on the stage. An arranging method using this arranging apparatus is also provided.
Abstract:
There are provided the steps of connecting a chip component 13 to a first substrate 10 through a wire 14, providing an electrode 21 on a second substrate 20, attaching, to the first substrate 10, a molding tool 30 having a protruded portion 31 formed corresponding to an array of a bump connecting pad 12 of the first substrate 10 and a cavity 32 formed corresponding to a region in which the chip component 13 is mounted, thereby forming a first sealing resin 34 for sealing the chip component 13 and the wire 14, bonding the electrode 21 to the bump connecting pad 12 through a solder, thereby bonding the first substrate 10 to the second substrate 20, and filling a second filling resin 40 in a clearance portion between the first substrate 10 and the second substrate 20.
Abstract:
The present invention relates to methods and arrangements for forming a solder joint connection. One embodiment involves an improved solder ball. The solder ball includes a perforated, metallic shell with an internal opening. Solder material encases the shell and fills its internal opening. The solder ball may be applied to an electrical device, such as an integrated circuit die, to form a solder bump on the device. The solder bump in turn can be used to form an improved solder joint connection between the device and a suitable substrate, such as a printed circuit board. In some applications, a solder joint connection is formed without requiring the application of additional solder material to the surface of the substrate. The present invention also includes different solder bump arrangements and methods for using such arrangements to form solder joint connections between devices and substrates.
Abstract:
There is provided a wiring substrate. The wiring substrate includes: a core substrate formed of a conductive material and having a through hole therein; an insulating layer formed on first and second surfaces of the core substrate; wiring patterns formed on the first and second surfaces via the insulating layer; and a via formed in the through hole and electrically connected to the wiring patterns. The via includes: a conductor ball and a conductor portion. The conductor ball has a conductive surface and an insulating member covering the conductive surface. A portion of the conductive surface is exposed from the insulating member. The conductor portion is electrically connected to the exposed conductive surface and the wiring patterns. At least one of the insulating member and the insulating layer is interposed between the via and the core substrate.
Abstract:
An electrical structure and method for forming electrical interconnects. The method includes positioning a sacrificial carrier substrate such that a first surface of a non-solder metallic core structure within the sacrificial carrier substrate is in contact with a first electrically conductive pad. The first surface is thermo-compression bonded to the first electrically conductive pad. The sacrificial carrier substrate is removed from the non-solder metallic core structure. A solder structure is formed on a second electrically conductive pad. The first substrate comprising the non-solder metallic core structure is positioned such that a second surface of the non-solder metallic core structure is in contact with the solder structure. The solder structure is heated to a temperature sufficient to cause the solder structure to melt and form an electrical and mechanical connection between the second surface of the non-solder metallic core structure and the second electrically conductive pad.
Abstract:
There is provided a multilayer wiring substrate on which at least one semiconductor element is mounted. The multilayer wiring substrate includes: a baseboard; a first wiring layer formed on the baseboard and having a plurality of first wiring portions; an insulating layer formed on the baseboard; a second wiring layer formed on the insulating layer and having a plurality of second wiring portions, the second wiring portions being electrically connected to each other via a conductor wire, the conductor wire being arranged within the insulating layer three-dimensionally in a curved manner; and conductor portions configured to pass through the insulating layer and connecting the first wiring portions and the second wiring portions.
Abstract:
An electronic component including, on one surface of a substrate (1), a plurality of circuit elements and external terminals each consisting of a conductive protrusion (9) for the circuit elements is provided with a structure capable of resisting an external force after mounting. Each of the circuit elements includes, as constituent elements, a pair of electrodes (2) and a resistive element (3) or a dielectric contacting with the pair of electrodes (2), each circuit element is covered with an overcoat (7) while the electrodes (2) are partially exposed as lands (4), the conductive protrusion (9) includes a fixedly bonding member, the conductive protrusion (9) is fixedly bonded to each of the lands (4) by the fixedly bonding member, at least three lands (4b) of the lands (4) are larger in area than the other lands (4a), the electronic component can stand alone while the conductive protrusion (9) contacts with a flat if the conductive protrusion (9) is fixedly bonded only to each of the larger-area lands (4b), and the conductive protrusions are all formed by fixedly bonding conductive balls (10) substantially equal in size to entire surfaces of the respective lands (4).
Abstract:
An electrical structure and method of forming. The electrical structure includes a first substrate comprising a first electrically conductive pad, a second substrate comprising a second electrically conductive pad, and an interconnect structure electrically and mechanically connecting the first electrically conductive pad to the second electrically conductive pad. The interconnect structure comprises a non-solder metallic core structure, a first solder structure, and a second solder structure. The first solder structure electrically and mechanically connects a first portion of the non-solder metallic core structure to the first electrically conductive pad. The second solder structure electrically and mechanically connects a second portion of the non-solder metallic core structure to the second electrically conductive pad.
Abstract:
The invention discloses design concepts and means and methods that can be used for enhancing the reliability and extending the operating life of electronic devices, and assemblies incorporating such devices, and substrates and/or PCBs, especially if such assemblies are exposed to severe environments such as thermal cycling or power cycling. The main thrust of the invention is to provide flexible joints, such as columns, between the attached components, and preferably to orient such joints, so that they would present their softest bending direction towards the thermal center or fixation point of the assemblies. Joints with rectangular or elongated cross-section are preferred, and they should be oriented so that the wide face of each joint would be facing the thermal center, perpendicular to the thermal deformation ray emanating from the thermal center towards the center of each respective joint. The concepts apply equally to leadless packages as well as to leaded packages.
Abstract:
The camera module structure (10) of the present invention is arranged such that a board electrode (2) of a printed board (1) and a mounting electrode (4) of a camera module (3) mounted on the printed board (1) are joined with each other through a solder joint section (5), and the board electrode (2) and the mounting electrode (4) are aligned by self-alignment. The solder joint section (5) includes a solder section (16) for solder-joining, and a supporting section (17) for supporting the camera module (3). The present invention realizes a solder mounting structure wherein a heavy-weight component is joined on the board with solder by self-alignment.