Abstract:
A method is disclosed for fabricating free-standing polymeric nanopillars or nanotubes with remarkably high aspect ratios. The nanopillars and nanotubes may be used, for example, in integrated microfluidic systems for rapid, automated, high-capacity analysis or separation of complex protein mixtures or their enzyme digest products. One embodiment, preferably fabricated entirely from polymer substrates, comprises a cell lysis unit; a solid-phase extraction unit with free-standing, polymeric nanostructures; a multi-dimensional electrophoretic separation unit with high peak capacity; a solid-phase nanoreactor for the proteolytic digestion of isolated proteins; and a chromatographic unit for the separation of peptide fragments from the digestion of proteins. The nanopillars and nanotubes may also be used to increase surface area for reaction with a solid phase, for example, with immobilized enzymes or other catalysts within a microchannel, or as a solid support for capillary electrochromatography-based separations of proteins or peptides.
Abstract:
An imprint lithographic method for making a polymeric structure comprising the steps of: (a) providing a mold having a shape forming a mold pattern; (b) providing a substrate having a higher surface energy relative to said mold; (c) providing a polymer film on said mold, said polymer film having a selected thickness, wherein the selected thickness of the polymer film on the mold pattern is capable of forming at least one frangible region in the polymer film having a thickness that is less than the remainder of the polymer film; (d) pressing the mold and the substrate relatively toward each other to form said frangible region; and (e) releasing at least one of said mold and said substrate from the other, wherein after said releasing, said frangible region remains substantially attached to said mold while the remainder of said polymer film forms the polymeric structure attached to said substrate.
Abstract:
A molding apparatus for patterning a workpiece includes a mold having a pattern to be transferred to the workpiece, with the pattern including recesses, a first support member for supporting the mold, and a second support member, arranged opposite to the first support member, for supporting the workpiece. A pressing mechanism brings the first and second support members close to each other and presses the mold and the workpiece together so as to transfer, to the workpiece, the pattern on the mold. Recessed portions are provided on at least one of a surface of the mold on the first support member side, a region of the first support member, and a region of the second support member. The recessed portions correspond to recesses in the pattern of the mold.
Abstract:
A molding apparatus for patterning a workpiece includes a mold having a pattern to be transferred to the workpiece, with the pattern including recesses, a first support member for supporting the mold, and a second support member, arranged opposite to the first support member, for supporting the workpiece. A pressing mechanism brings the first and second support members close to each other and presses the mold and the workpiece together so as to transfer, to the workpiece, the pattern on the mold. Recessed portions are provided on at least one of a surface of the mold on the first support member side, a region of the first support member, and a region of the second support member. The recessed portions correspond to recesses in the pattern of the mold.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A method is provided for manufacturing microstructures of the type which contain a substrate and an array of protruding microelements with through-holes, which are used in penetrating layers of skin. The microelements are embossed or pressed into an initial substrate structure, which in some embodiments is formed from extruded polymeric material, and in some cases from two layers of polymer that are co-extruded. The through-holes are formed from filled through-cylinders of a second material that is removed after the embossing or pressing step; in other instances, the through-holes are left hollow during the embossing or pressing step.
Abstract:
The invention is directed to a patterned aerogel-based layer that serves as a mold for at least part of a microelectromechanical feature. The density of an aerogel is less than that of typical materials used in MEMS fabrication, such as poly-silicon, silicon oxide, single-crystal silicon, metals, metal alloys, and the like. Therefore, one may form structural features in an aerogel-based layer at rates significantly higher than the rates at which structural features can be formed in denser materials. The invention further includes a method of patterning an aerogel-based layer to produce such an aerogel-based mold. The invention further includes a method of fabricating a microelectromechanical feature using an aerogel-based mold. This method includes depositing a dense material layer directly onto the outline of at least part of a microelectromechanical feature that has been formed in the aerogel-based layer.
Abstract:
The invention relates to a micro-mechanical thermal structure for modulating a light beam and a method for manufacturing such a structure. The micro-mechanical structure comprises two layers of material with different thermal expansion coefficients in a first direction and a second direction respectively, in which the first direction is transverse to the second direction and the two layers comprise an oriented polymer and the director of the molecules of the oriented polymer of the first layer is transverse to the director of the molecules of the oriented polymer of the second layer. An array of such micro-mechanical structures may form a thermo-optical modulator for modulating light. The method comprises a step of providing a mold with an orientation-inducing layer to obtain a molecular orientation in a mono-meric state of liquid crystalline monomers and a step of fixing the molecular orientation by photo-polymerization.
Abstract:
Provided is a method of fabricating hierarchical articles that contain nanofeatures and microstructures. The method includes providing a substrate that includes nanofeatures and then creating microstructures adding a layer, removing at least a portion of the layer to reveal at least a portion of the substrate.
Abstract:
The invention provides a device for adhering cells in a specific and predetermined position, and associated methods. The device includes a plate defining a surface and a plurality of cytophilic islands that adhere cells, isolated by cytophobic regions to which cells do not adhere, contiguous with the cytophilic islands. The islands or the regions or both may be formed of a self-assembled monolayer (SAM).