Abstract:
There is described a radiation source module for use in a fluid treatment system. The radiation source module comprises: a housing having an inlet, an outlet and a fluid treatment zone disposed between. The fluid treatment zone comprises a first wall surface and a second wall surface interconnected by a floor surface. The first wall surface, the second wall surface and the floor surface are configured to receive a flow of fluid through the fluid treatment zone. The radiation source module further comprises at least one radiation source assembly secured with respect to the first wall surface and the second wall surface and a module motive coupling element connected to the housing and configured to be coupled to a module motive element to permit the radiation source module to be installed in and extracted from the fluid treatment system. A fluid treatment system comprising the radiation source module is also described.
Abstract:
An ultraviolet irradiation system includes: an ultraviolet irradiation apparatus including a plurality of ultraviolet lamps; a flowmeter configured to measure a flow rate of the water to be treated that passes through the ultraviolet irradiation apparatus; and an ultraviolet-dose monitoring and controlling apparatus configured to monitor an ultraviolet dose of the ultraviolet irradiation apparatus and to control outputs of the ultraviolet lamps. The plurality of ultraviolet lamps include a first ultraviolet lamp and a plurality of second ultraviolet lamps. The ultraviolet irradiation apparatus includes: a first measurement head configured to measure an ultraviolet intensity of the first ultraviolet lamp; and a plurality of second measurement heads configured to respectively measure ultraviolet intensities of the plurality of the ultraviolet lamps. A distance between the first ultraviolet lamp and the first measurement head is set to a determined value.
Abstract:
The present invention is directed to apparatuses and methods for treating fluids with ultraviolet light, including fluid streams, utilizing elliptical chambers. Suitably, water or other fluids can be disinfected using the chambers. Methods for optimizing irradiation of the fluid in the apparatuses are also provided.
Abstract:
A UV disinfection system for waste water and drinking water, includes a number of UV radiators arranged in cladding tubes, the cladding tubes being configured essentially symmetrically to a longitudinal axis, as well as a cleaning device for the cladding tubes. The cleaning device includes at least one cleaning ring for each cladding tube, which surrounds the cladding tube, the at least one cleaning ring having a scraper ring resting against the cladding tube, at least one drive for driving the cleaning ring in the direction of the longitudinal axis, and supply provisions for supplying pressurised fluid under elevated pressure from a pressure source to the scraper ring are provided, wherein pressure may be applied onto the scraper ring from the pressure source in the direction of the cladding tube.
Abstract:
An ultraviolet water treating apparatus according to one embodiment has an ultraviolet irradiation unit, and water inlet and outlet pipes. The unit includes a hollow enclosure with first and second openings in its peripheral wall. Within the enclosure, one or more ultraviolet irradiation devices are provided, which irradiate ultraviolet light onto the water flowing through the enclosure. Also within the enclosure, a cleaning device is provided, which includes a cleaning tool to clean the surface of each protective sleeve, and a driving unit to move the cleaning tool along the protective sleeve. The inlet pipe is in fluid communication with the first opening and flows the water therethrough into the enclosure. The outlet pipe is in fluid communication with the second opening and flows the ultraviolet-irradiated water therethrough out of the enclosure. The inlet and outlet pipes have their central axes intersected with the central axis of the enclosure.
Abstract:
A method and an apparatus are described for use in the irradiation of fluids. The apparatus has an elongate conduit (312) having a central axis (334) and two or more elongate ultraviolet radiation sources (114) extending along the interior of the conduit for irradiation of the fluid within the conduit. An array of static mixer elements (300) is located within the conduit, and the two or more elongate ultraviolet radiation sources (114) are arranged to extend through apertures in deflection surfaces of the static mixer elements making up the array (300). The apparatus and method allows for reliable and uniform ultraviolet irradiation of fluids of low UV transmissivity, such as turbid fluids, particularly for ultraviolet disinfection of such fluids. Wipers may be fitted to the static mixer elements to enable relative movement between the static mixer elements and the surfaces of the elongate ultraviolet radiation sources to clean the surfaces of the sources without need to dismantle the apparatus.
Abstract:
An ultraviolet wastewater or water treatment system is described and comprises a plurality of ultraviolet lamps where each lamp includes a protective cladding and where the ultraviolet lamps are disposed in vertical modules that form a bank of ultraviolet lamps. A series of beams are disposed over the ultraviolet lamps with each beam supporting a carriage thereon. Each carriage supports a scraper that extends downwardly therefrom for engaging and cleaning a module of ultraviolet lamps. A common drive source is operatively connected to the respective carriages for driving the carriages back and forth on the respective beams such that as the common drive source drives the carriages back and forth, the respective scrapers move back and forth cleaning the protective cladding extending around the respective ultraviolet lamps.
Abstract:
A photocatalytic water-processing system decomposes organic and inorganic materials present in water. The system includes a reservoir for storing the water to be processed, a main unit formed separately and connected to the reservoir, an inlet pipe for guiding the water from the reservoir to the main unit, an outlet pipe for returning the water to the reservoir, and a pump for guiding the water from the reservoir to the main unit and returning the water. The reservoir has an electrode unit therein for electrolyzing the water so as to flocculate and precipitate the inorganic materials in the reservoir, and a filter is arranged within the main unit. Also, a photocatalytic processing device is arranged within the main unit at a downstream side of the filter for decomposing the organic material in the absence of scale formed of the inorganic materials.
Abstract:
Systems and methods for cleaning protective sleeves in UV decontamination systems are disclosed. In one embodiment, a system for decontaminating contaminated media includes a translucent sleeve surrounding a light source, and a housing configured to receive the sleeve. A distance between an outer surface of the sleeve and an inner surface of the housing defines an annulus for flowing a contaminated fluid. The system also includes a pump for flowing the contaminated fluid through the annulus. In addition, the system in such embodiments may include a honing material in the contaminated fluid, where the flowing of the honing material against the outer surface of the sleeve removes debris aggregated on the outer surface of the translucent sleeve.