Abstract:
A hand-held probe for intra-operative detection of fluorescence labeled compounds includes a housing comprising a handle and a columnar portion, and a power source within the housing. A light emission source proximate the columnar portion of the housing is configured to fluoresce at least one of predetermined compounds and predetermined antibodies. An excitation switch proximate the handle selectably activates the light emission source. A detector receives fluorescent light emissions directed toward the columnar portion from at least one of the compounds and antibodies and convert the fluorescent light emissions to a corresponding emission electrical signal. A controller within the housing receives the emission electrical signal from the detector and converts the emission electrical signal to a corresponding data signal. Finally, a data port within the housing receives the data signal from the controller, converts the data signal to a corresponding output signal, and transmits the output signal.
Abstract:
An optical device includes a first substrate having a first top surface and a first bottom surface, a second substrate having a second top surface and a second bottom surface, and a spacer substrate between substantially planar portions of the second top surface and the first bottom surface. The spacer, first, and second substrates seal an interior space between the second top surface of the second substrate and the first bottom surface of the first substrate. At least two of the first, second, and spacer substrates are aligned and secured on a wafer level. An optoelectronic element is within the interior space. An optical axis of the optical device extends through one of the first top and bottom surfaces and the second top and bottom surfaces. An electrical interconnection extends from the optoelectronic element to outside the interior space.
Abstract:
A display apparatus is provided. The display apparatus is used for detecting an ultraviolet (UV) intensity. The display apparatus includes a lower-substrate, an upper-substrate and a processing unit. The lower-substrate includes a first, a second and a third photo sensors for detecting an intensity of the light in a first, a second and a third bands and converting the intensity of the light in the first, the second and the third bands into a first, a second and a third currents respectively, wherein the ranges of the second and the third bands are comprised within the range of the first band. The upper-substrate is disposed opposite to the lower-substrate. The processing unit is coupled to the first, the second and the third photo sensors, for receiving and processing the first, the second and the third currents so as to obtain the UV intensity.
Abstract:
Disclosed is a controllable light angle selecting device that includes a fixed light selecting means for transmitting light within a limited acceptance angle, optically connected to at least one light redirecting means capable of achieving a variable angular difference between light entering said light redirecting means and light exiting said light redirecting means. Also disclosed is a photometer employing such controllable light angle selecting device and arranged in the path of light between a light source and at least one light measuring sensor arranged to receive at least part of the light exiting from the controllable light angle selecting device.
Abstract:
A system and/or a method reads, measures and/or controls intensity of light emitted from a light-emitting diode (LED). The system and/or the method have a light intensity detector adjacent to the LED for reading and/or measuring the intensity of light emitted from the LED. The system and/or the method have a control circuit that may be electrically connected to both the detector and/or the LED for measuring and/or for controlling an intensity of light emitted from the LED. A housing surrounds the light detector and/or the LED. The housing has a pathway that allows only light emitted from the LED to reach the light detector. The LED has a finish and/or a coating that eliminates and/or retards absorption of light by internal components of the LED. The finish and/or the coating eliminates and/or retards reflection of the light by the LED.
Abstract:
A machine and methods measure a characteristic of an optical signal incident upon a detector characterized by one or more dynamic response parameters. One method receives an output signal from the detector and compares that output signal and a computationally determined response of the detector to a known optical signal incident upon the detector. The response is based on said one or more dynamic parameters. The method determines the characteristic based on a relationship between the output signal and the computationally determined response. Another method observes an output signal from an optical detector detecting one or more optical signals, accesses a characteristic curve of detector response, compares the observed output signal to the characteristic curve, and calculates at least one characteristic of one or more optical signals based on a relationship of the observed output signal and the characteristic curve.
Abstract:
The present invention provides radiation detectors with high detection sensitivity. The radiation detectors according to the present invention each include an Al2O3 substrate, a CaxCoO2 (where 0.15
Abstract translation:本发明提供了具有高检测灵敏度的辐射探测器。 根据本发明的辐射检测器各自包括Al 2 O 3衬底,层叠在Al 2 O 3衬底上并具有与Al 2 O 3衬底的表面倾斜的CoO 2平面的CaxCoO 2(其中0.15
Abstract:
A system and method for detecting the presence of a moving object within a detection zone is provided. The system includes a first sensor responsive to light in a first range of wavelengths in the detection zone, a second sensor responsive to light in a second range of wavelengths in the detection zone, wherein the second range of wavelengths is different from the first range of wavelengths, and a processing component for generating a variable threshold value for the first sensor based upon at least maximum and minimum output signals from the second sensor within a predetermined period of time, and for comparing the first output signal with the variable threshold value. The processing component generates an activating signal if the first output signal exceeds the threshold value.
Abstract:
Provided is a method of controlling multiple beams directed to a structure in a workpiece, the method comprising generating a first illumination beam with a first light source and a second illumination beam with a second light source, projecting the first and second illumination beams onto a separate illumination secondary mirror, reflecting the first and second illumination beams onto an illumination primary mirror, the reflected first and second illumination beams projected onto the structure at a first and second angle of incidence respectively, the reflected first and second illumination beams generating a first and second detection beams respectively. The separate illumination secondary mirror is positioned relative to the illumination primary mirror so as make the first angle of incidence substantially the same or close to a calculated optimum first angle of incidence and make the second angle of incidence substantially the same or close to a calculated optimum second angle of incidence. The first and second detection beams are diffracted off the structure at the corresponding angle of incidence to a detection primary mirror, reflected onto a separate secondary detection mirror and other optical components on the detection path, and onto spectroscopic detectors.
Abstract:
The ultraviolet ray sensor measures the intensity of ultraviolet rays irradiated to the ultraviolet ray receiving surface. The CPU performs control to measure ultraviolet intensity in a case in which the ultraviolet ray receiving surface of the ultraviolet ray sensor faces in a predetermined direction.