Abstract:
Methods and systems for sensor calibration and sensor glucose (SG) fusion are used advantageously to improve the accuracy and reliability of orthogonally redundant glucose sensor devices, which may include optical and electrochemical glucose sensors. Calibration for both sensors may be achieved via fixed-offset and/or dynamic regression methodologies, depending, e.g., on sensor stability and Isig-Ratio pair correlation. For SG fusion, respective integrity checks may be performed for SG values from the optical and electrochemical sensors, and the SG values calibrated if the integrity checks are passed. Integrity checks may include checking for sensitivity loss, noise, and drift. If the integrity checks are failed, in-line sensor mapping between the electrochemical and optical sensors may be performed prior to calibration. The electrochemical and optical SG values may be weighted (as a function of the respective sensor's overall reliability index (RI)) and the weighted SGs combined to obtain a single, fused SG value.
Abstract:
Validation verification data quantifying an intensity of light reaching a detector of a spectrometer from a light source of the spectrometer after the light passes through a validation gas across a known path length can be collected or received. The validation gas can include an amount of an analyte compound and an undisturbed background composition that is representative of a sample gas background composition of a sample gas to be analyzed using a spectrometer. The sample gas background composition can include one or more background components. The validation verification data can be compared with stored calibration data for the spectrometer to calculate a concentration adjustment factor, and sample measurement data collected with the spectrometer can be modified using this adjustment factor to compensate for collisional broadening of a spectral peak of the analyte compound by the background components. Related methods, articles of manufacture, systems, and the like are described.
Abstract:
Methods and systems for autofocusing of an imaging system are presented. Provided is an imaging system and an optical interferometry system for generating one or more images corresponding to a target region in a subject. The method provides calibration information that identifies a focal position of the optical interferometry system corresponding to a determined focal position of the imaging system. A subsequent focal position of the imaging system is determined for generating a desired image corresponding to at least one of another target region in the subject and another position of the target region relative to the imaging system based on the calibration information.
Abstract:
A test sensor (100) for determining an analyte concentration in a biological fluid comprises a strip including a fluid receiving area (128) and a port-insertion region (126). A first row of optically transparent (132) and non-transparent positions forms a calibration code pattern (130) disposed within a first area of the port-insertion region (126). A second row of optically transparent (142) and non-transparent positions forms a synchronization code pattern (140) disposed within a second area of the port-insertion region (126). The second area is different from the first area. The synchronization code pattern (140) corresponds to the calibration code pattern (130) such that the synchronization code pattern (140) provides synchronization of the serial calibration code pattern (130) during insertion of the port-insertion region (126) into the receiving port of the analyte meter.
Abstract:
The present invention relates to a method for controlling a spectrometer for analyzing a product, the spectrometer including a light source including several light-emitting diodes having respective emission spectra covering in combination an analysis wavelength band, the method including steps of: supplying at least one of the light-emitting diodes with a supply current to switch it on, measuring a light intensity emitted by the light source by measuring a current at a terminal of at least another of the light-emitting diodes maintained off, determining, according to each light intensity measurement, a setpoint value of the supply current of each diode that is on, and regulating the supply current of each diode that is on so that it corresponds to the setpoint value.
Abstract:
Disclosed are methods that can be used to automatically calibrate a fluorescence-measuring instrument capable of continuously measuring the concentration of hardness in process water. The calibration method is used to compensate for drift of instrument and equipment, changes of operational conditions, and contamination of reagents and calibration standards. Calibration of the fluorescence-measuring instrument using the present calibration method improves both accuracy and repeatability for subsequent hardness concentration measurements.
Abstract:
Provided herein, are droplet mixture compositions and systems and methods for forming mixtures of droplets. The system may comprise two or more droplet generation units. Each unit may include at least one first input well, a second input well, and an output well connected to the first and second input wells by channels that form a droplet generator. The combined droplet populations can be mixed, heated, and collected for multiple uses, such as for use as calibration standards for instrument testing and analysis.
Abstract:
The present invention provides a method for quantitative determination of oxidant which method is capable of accurately and rapidly performing quantitative determination of oxidant at low cost, and an apparatus for quantitative determination of oxidant used in the method. The method for quantitative determination of oxidant according to the present invention is a method for quantitative determination of oxidant performing quantitative determination of oxidant in a sample using a redox reaction, the method including: adding one kind of reducing agent to a sample solution containing one or a plurality of kinds of oxidants having different lifetimes; producing an absorbance curve by measuring a time change in absorbance of the post-color-change or post-coloring reducing agent; and performing the quantitative determination of the oxidant while identifying the oxidant in the sample solution based on the obtained absorbance curve.
Abstract:
Combined illuminator/light collectors (I/LCs) that provide measurement and/or reference light to a target and collect light from the target. One example of a use for a combined I/LC of the present disclosure is for an optic of an optical reader used to read one or more chemical indicators that undergo physical changes that can be optically detected. The combined I/LC includes a spot lensing designed and configured in conjunction with the target to provide spot illumination on the target from one or more light sources. A light collector collects light from the target resulting from the spot illumination. Some embodiments further include dispersive lensing to direct a portion of the light from each light source away from the spot illumination to keep that light from interfering with the spot illumination.
Abstract:
The present invention relates to a gas detector cell and cell unit for optical detection of a predetermined gas, the cell being provided with optical means for investigating a gas sample present in the cell. The cell is constituted by a volume enclosed in a container, at least part of the container wall being constituted by a membrane, the membrane being provided with openings allowing diffusion of gas therethrough, and the membrane openings being provided with a catalyst for converting the gas diffusing therethrough to said predetermined gas.