Abstract:
Operational parameters of a single-photon detector are determined with a continuous wave laser source. At a fixed trigger, a dark count probability and a series of count probabilities at different optical powers are determined. A particular optical power is selected by using a wide-range variable attenuator to attenuate the optical power of the continuous wave laser. The dark count probability and the count probabilities are determined for different trigger rates. The operational parameters include efficiency, afterpulsing constant, and detrap time. The operational parameters are computed by fitting the computed dark count probabilities and count probabilities to a user-defined relationship.
Abstract:
A system with a machine and a lighting device. The machine includes an image capture device and a machine vision processing system configured to detect a characteristic of a subject in a space for an operation of the machine. The lighting device includes a first light source for generating light to illuminate the space, and a second light source for generating light of a particular wavelength to support detection of the characteristic of the subject via the machine vision processing system. The light of the particular wavelength is output at a sufficient intensity reasonably expected to produce a particular emission from the subject detectable via the image capture device different from an emission produced by exposure of the subject to the light for illumination of the space. The first and second light sources are integrated into the lighting device.
Abstract:
The present disclosure describes systems, methods, and devices for estimating spectral contributions in ambient light. The present disclosure also describes systems, methods, and devices for compensating for field of view errors resulting from the user, contextual structures (e.g., buildings, trees, fixtures, or geological formations), atmospheric effects (e.g., ozone coverage, smog, fog, haze, or clouds), device structures, and/or device orientation/tilt relative to a light source being measured (e.g., sun, indoor/outdoor light emitter, or an at least partially reflective surface). The present disclosure also describes systems, methods, and devices for estimating spectral contributions in light or color measurements and accounting for field of view errors to obtain a refined estimate.
Abstract:
A stroboscope with an integral optical reflective sensor, which can be removable or fixed, contains a light emitting source, a light sensitive receiver, a pulse conditioning circuit, a stroboscope circuit, a blanking circuit, and a stroboscope light source. The light emitting source projects a light beam to a reflective target. The reflected light beam from the reflective target is detected by the light sensitive receiver. The pulse conditioning circuit generates a set of electrical pulses coincident with the reflected light beam which are sent to the stroboscope circuit. Depending on the signal received by the stroboscope circuit, the stroboscope light source is triggered. The blanking circuit prevents false triggering of the stroboscope light source by introducing a time delay. The time delay is applied when the stroboscope light source is switched on and for a finite time after the stroboscope light source is switch off.
Abstract:
The invention relates to a laser assembly (100) having a laser (L) for generating primary laser pulses (1), beam splitting optics (15) for splitting a primary laser pulse into a plurality of temporally staggered sub-pulses, and having focusing optics (17-19) for focusing the sub-pulses in or on an object (20) so that every sub-pulse is focused in a separate focus volume (F). The invention is characterized in that the mutual spatial and/or temporal relationship of the focus volumes (F) of the sub-pulses originating from a common primary laser pulse is variably adjustable. The invention also relates to a corresponding method.
Abstract:
An imaging apparatus is capable of imaging with the use of an illumination apparatus including a flash unit capable of changing a radiation direction, and includes: a photometry unit; a display unit that displays information about a result of photometry using the photometry unit; and a display control unit that executes a control related to display on the display unit, wherein when the illumination apparatus is performing a first operation of multiple emissions by the flash unit while changing automatically the radiation direction of the flash unit to a plurality of different directions, the display control unit performs a control so as not to display the information about the photometry result on the display unit.
Abstract:
The provided solar simulator light-intensity evaluation apparatus and method can evaluate the characteristics of a solar cell in an arbitrary place at an arbitrary time and date, using an existing solar simulator, as follows: an estimated spectral irradiance of the natural sunlight is calculated under a measurement condition including a place and/or a time and date where and when the solar cell is measured; and an target value of adjustment and estimated light amount value of the solar simulator are calculated under the measurement condition, on the basis of the estimated spectral irradiance having been calculated, the spectral irradiance of the solar simulator, and solar cell information including a spectral sensitivity of the solar cell.
Abstract:
A method and apparatus for simulating light. A first light from a first filterer is output to a solar cell. The first light output by the first filterer has a coarse spectrum that simulates the light in a selected environment. A second light from a second filterer is output to the solar cell while the first light is output by the first filterer. The second light output by the second filterer has a fine spectrum selected for a group of junctions in the solar cell.
Abstract:
The present disclosure relates to an optical sensor module, an optical sensing accessory, and an optical sensing device. An optical sensor module comprises a light source, a photodetector, an electrode and a substrate. The light source is configured to convert electric power into radiant energy and emit light to an object surface. The photodetector is configured to receive the light from an object surface and convert radiant energy into electrical current or voltage. The electrode is configured to detect an external circuit formed by the contact with an object surface. An optical sensing accessory and an optical sensing device comprise the optical sensor module and other electronic modules to have further applications.
Abstract:
A light emitting module testing apparatus includes a sensing unit and a controller. The sensing unit includes a photodiode array sensing light emitted from a light emitting module serving as a test object. The controller generates luminance information based on light sensed by the sensing unit, and sets an operating condition of the light emitting module serving as the test object by comparing the generated luminance information with a pre-set reference range. The light emitting module testing apparatus thereby senses luminance of light emitted from the light emitting module serving as a test object, and sets the operating condition of the light emitting module to have an appropriate luminance.