Abstract:
In one implementation, a method of testing multiple DUTs using a single tester channel is provided which includes providing an input signal with the single tester channel simultaneously to each of the DUTs. The method further includes providing a clock signal to each of the DUTs. The clock signal provided to each of the DUTs may be successively delayed clock signals, which are provided to successive DUTs. The method includes using the clock signal to cause a next DUTs to provide an output transition before an output of a prior DUT is returned to a pre-transition state. The method further includes detecting with the single tester channel the output transition of each of the DUTs in response to the input signal and the clock signal.
Abstract:
In one embodiment, a laminated printed circuit board translator is provided. In some embodiments, the translator includes a receiving board adapted to receive a pin, the receiving board includes a plated via extending through the receiving board and has a hole for receiving a pin. An interface board laminated with the receiving board has a controlled depth via extending through it to contact a conductive trace. The conductive trace extends between the receiving board and the interface board to connect the plated via of the receiving board with the controlled depth via of the interface board. The controlled depth via is configured so that it is capable of being plated through a single sided drilled opening in the interface board. Some embodiments have a pad on the interface board connected to the controlled depth via.
Abstract:
A device for interfacing a test head and a prober is disclosed using wires or cables to provide the connection from a probe card interface boards to the probe card. The use of wires or cables, in place of the traditional pogo pin arrangement allows for more reliable and efficient testing, as well as additional high performance tests to be run. Optionally, a probe interface contains a stiffening member with multiple sidewalks and individual, configuration-specific probe card interface strips are connected to a probe card through zero insertion force clamps. The probe card interface attaches to the test head using standard probe interface board (“PIB”) docking mechanics. The assembly is then connected to a probe to carry out the testing procedures.
Abstract:
A tester interface assembly is disclosed for coupling a plurality of tester electronic channels to a device-interface-board. The tester interface assembly includes at least one harness assembly having a plurality of coaxial cables, each cable including a body having a center conductor and a shield. The shield is formed coaxially around the center conductor and separated therefrom by a layer of dielectric. Each cable further includes a distal tip formed substantially similar to the body and including respective formed conductive pads disposed on the distal extremities of the center conductor and the shield. The harness employs a housing formed with an internal cavity for receiving and securing the cable distal ends in close-spaced relationship such that the distal tips form an interface engagement plane. A compliant interconnect is interposed between the harness assembly and the device-interface-board, and includes a plurality of conductors formed to engage the cable distal ends along the engagement plane.
Abstract:
An electrical connector assembly including a printed circuit board that has base and cover layers of dielectric material and first and second ground planes of conductive material. The base and cover layers are stacked relative to each other and located between the first and second ground planes. The base layer has a conductor-receiving portion that extends beyond the cover layer. The circuit board also includes signal traces that are exposed to an open space that exists above the conductor-receiving portion. The connector assembly also includes a compression component that is configured to be positioned in the open space to press wire-terminating ends of signal conductors onto the signal traces at the conductor-receiving portion.
Abstract:
A connector assembly includes a connector housing configured to be coupled to a primary circuit board. A connector is held within the connector housing. The connector has a connector circuit board having a mating surface and a cable surface. The mating surface has mating contacts configured to be mated to corresponding mating contacts of a secondary circuit board. The cable surface has cable contacts. Cables extend between a first end and a second end. The first end of each cable is coupled to corresponding cable contacts of the connector circuit board. The second end of each cable is configured to be coupled to a cable contact on the primary circuit board or a second connector assembly on the primary circuit board.
Abstract:
A connector assembly includes a connector housing configured to be coupled to a primary circuit board. A connector is held within the connector housing. The connector has a connector circuit board having a mating surface and a cable surface. The mating surface has mating contacts configured to be mated to corresponding mating contacts of a secondary circuit board. The cable surface has cable contacts. Cables extend between a first end and a second end. The first end of each cable is coupled to corresponding cable contacts of the connector circuit board. The second end of each cable is configured to be coupled to a cable contact on the primary circuit board or a second connector assembly on the primary circuit board.
Abstract:
Methods and apparatus are provided for securely and cost effectively attaching one or more shielded cables to a planar substrate. A cable assembly includes a printed circuit board (PCB) coupled to a distal end of the one or more shielded cables. Perpendicular alignment of the distal cable ends promotes a dense array that is achieved using angular mounting brackets for coupling cable shields to electrical contacts on an engagement surface of the PCB. Mounting brackets are attached between the cable shield and shield contacts using electrically conductive attachment techniques including soldering and laser welding. The PCB also includes one or more signal contacts for each cable. Distal ends of the internal conductors are each bent about 90 degrees from the vertical cable axis to align with the horizontal engagement surface. Internal conductors are surface mounted to their respective signal contact using one or more of soldering and laser welding.
Abstract:
A device for interfacing a test head and a prober is disclosed using wires or cables to provide the connection from a probe card interface boards to the probe card. The use of wires or cables, in place of the traditional pogo pin arrangement allows for more reliable and efficient testing, as well as additional high performance tests to be run. Optionally, a probe interface contains a stiffening member with multiple sidewalks and individual, configuration-specific probe card interface strips are connected to a probe card through zero insertion force clamps. The probe card interface attaches to the test head using standard probe interface board (“PIB”) docking mechanics. The assembly is then connected to a probe to carry out the testing procedures.
Abstract:
In one embodiment, a tester interface module for connecting a plurality of signal paths from at least one electronic assembly to at least one other electronic assembly is provided. The interface module includes a capture board having center conductor vias with center conductor holes extending through the capture board. Axial cables secured to the capture board have center conductors extending at least part way through a corresponding center conductor hole of the center conductor via. An interface component is adjacent to the capture board, the conductor paths being conductively bonded to the conductor vias of the capture board so as to electrically connect center conductors to corresponding conductor paths. The conductor paths of the interface component are arranged to allow connection with an electronic assembly.