Abstract:
A component-embedded substrate includes a chip capacitor. The chip capacitor includes a ceramic laminate body and a plurality of terminal electrodes. The component-embedded substrate has a first principal surface and a second principal surface. At least two of the plurality of terminal electrodes are connected to the first principal surface and define a first terminal electrode group, and at least two of the plurality of terminal electrodes are connected to the second principal surface and define a second terminal electrode group. One terminal electrode in the first terminal electrode group is electrically connected to one terminal electrode in the second terminal electrode group via the internal electrodes, and capacitance is provided by a pair of the terminal electrodes in the first terminal electrode group via the dielectric layer, and capacitance is provided by a pair of the terminal electrodes in the second terminal electrode group via the dielectric layer. A direction in which the internal electrodes are stacked is parallel or substantially parallel to the two principal surfaces.
Abstract:
In a chip-component structure, a monolithic ceramic capacitor is a structure including a predetermined number of substantially flat internal electrodes stacked on each other. An interposer includes a substrate larger than the outer shape of the monolithic ceramic capacitor. The substrate includes a first major surface on which first front electrodes for use in mounting the monolithic ceramic capacitor are disposed and a second major surface on which first back electrodes for use in connecting to an external circuit board are disposed. The interposer includes a depression in its side surface. The depression includes a wall surface on which a connection conductor is disposed. The front surface of the substrate is overlaid with resist films extending along its edges.
Abstract:
A component assembly that can be easily built in a main substrate with high accuracy is formed such that a glass transition temperature of a built-in-component layer of an assembly substrate in which multiple capacitors are embedded is higher than a glass transition temperature of a built-in-component layer of a built-in-component substrate. Thus, thermal deformation of the component assembly is prevented when the built-in-component substrate in which the component assembly is built is heated during reflow, for example. The component assembly can thus be highly accurately built in the built-in-component substrate. Moreover, when the component assembly in which the multiple capacitors are embedded is built in the built-in-component substrate, electrode pads of the component assembly in which the multiple capacitors are embedded can be electrically connected to wiring layers of the built-in-component substrate by soldering despite the variation in height among the capacitors.
Abstract:
In a chip-component structure, a monolithic ceramic capacitor is a structure including a predetermined number of substantially flat internal electrodes stacked on each other. An interposer includes a substrate larger than the outer shape of the monolithic ceramic capacitor. The substrate includes a first major surface on which first front electrodes for use in mounting the monolithic ceramic capacitor are disposed and a second major surface on which first back electrodes for use in connecting to an external circuit board are disposed. The interposer includes a depression in its side surface. The depression includes a wall surface on which a connection conductor is disposed. The front surface of the substrate is overlaid with resist films extending along its edges.
Abstract:
An electronic device which includes a feedthrough capacitor mounted on a front surface of a substrate. A feedthrough electrode penetrates a laminate (body of the capacitor). External electrodes are electrically connected to opposite ends of the feedthrough electrode. A capacitor electrode is disposed to form capacity in cooperation with the feedthrough electrode. A wiring conductor is formed on a rear surface of the substrate or inside the substrate, and via-hole conductors are connected to the wiring conductor. The feedthrough electrode and the external electrodes constitute a first current path. The wiring conductor and the via-hole conductors constitute a second current path electrically connected in parallel to the first current path.
Abstract:
The method of manufacturing electronic parts comprises the steps of: preparing a mother board; mounting element parts on the mother board; providing a thermosetting resin on a surface of the mother board surface on which the element parts are mounted; semi-curing the thermosetting resin so as to be in a range of a stage B condition of the thermosetting resin; splitting the mother board with the thermosetting resin into individual electronic parts each having a divided mother board, at least one element part and the thermosetting resin thereon; and heating the individual electronic parts so that the thermosetting resin in the stage B condition melts first and is then cured permanently.
Abstract:
The present optical position detection method and the apparatus therefor is adapted to compute an arithmetic mean of the adjusted light reception values received by adjacent photodetectors as the virtual light reception value at the virtual position, compare not only the adjusted light reception values of the respective photodetectors but also the virtual light reception values with the reference level and utilize the virtual position also as the light interruption position data when light interruption is determined, thus enhancing the accuracy of detecting the position of an object.