Abstract:
An auto ignition type autothermal reformer (ATR) performs reproducible ignition using a catalyst that performs ignition without a separate ignition unit, such as an igniter or heating wire, and a fuel cell system having the ATR. The ATR includes a reaction container having a first opening through which a fuel is introduced into the reaction container and a second opening through which a reformate is discharged from the reaction container, the fuel having a mixture of an aqueous primary fuel solution and hydrogen peroxide; a first catalyst disposed adjacent to the first opening in the reaction container, the first catalyst being a granular catalyst; a second catalyst disposed at the rear portion of the first catalyst to promote an autothermal reforming reaction; and a third catalyst disposed at the rear portion of the second catalyst to promote an oxidation reaction.
Abstract:
A fuel cell system includes: a reformer adapted to generate hydrogen from a fuel containing hydrogen through a chemical catalytic reaction using thermal energy; at least one electricity generator adapted to generate electric energy through an electrochemical reaction of hydrogen and oxygen; a fuel supply unit adapted to supply the fuel to the reformer; and an air supply unit adapted to supply oxygen to the reformer and the at least one electricity generator. The reformer includes a plurality of plates stacked with each other and forming at least one passage adapted to allow a fuel or a gas to flow therethrough and at least one catalyst layer coated on inner surfaces of the at least one passage. In the reformer, the at least one catalyst layer is formed to have a plurality of grooves extending substantially in a same direction as of the at least one passage.
Abstract:
A fuel cell system includes: a reformer for generating hydrogen from hydrogen-containing fuel; at least one electricity generator for generating electric energy through an electrochemical reaction of hydrogen and oxygen; a fuel supply unit for supplying the fuel to the reformer; and an oxygen supply unit for supplying the oxygen to the reformer and the at least one electricity generator. The reformer includes: a plurality of reaction sections, wherein at least one of the reaction sections has a channel; at least one cover plate; and a bonding joint between two of the reaction sections and between the at least one of the reaction sections and the at least one cover plate to couple the at least one of the reaction sections and the at least one cover plate to each other.
Abstract:
A fuel cell reformer includes a main body having a first pipe with a second pipe inside the first pipe, a thermal source unit in the second pipe, a reforming reaction unit in a first region between the first pipe and the second pipe to generate a reforming gas containing hydrogen through a reforming reaction of a fuel, and a carbon monoxide reduction unit in a region other than the first region between the first pipe and the second pipe to reduce a concentration of carbon monoxide contained in the reforming gas. A thermal treatment unit in the main body supplies thermal energy to the reforming reaction unit and the carbon monoxide reduction unit at a time of initial driving of the reformer such that the supplied thermal energy corresponds to a unique operational temperature range in the reforming reaction unit, and to a unique operational temperature range in the carbon monoxide reduction unit.
Abstract:
A fuel reforming apparatus in constructed with a main body including a first pipe and a second pipe disposed in the first pipe and a heat source installed in the second pipe and adapted to generate thermal energy in the second pipe. A reforming reaction unit is formed by filling a reforming catalyst in a space defined between the first and second pipes and is adapted to generate a reformed gas containing hydrogen through a reforming reaction of the fuel. A housing encloses the main body and allows a combustion gas generated from the heat source to flow along an outer circumference of the reforming reaction unit.
Abstract:
A fuel cell system includes a reformer for generating hydrogen gas from fuel containing hydrogen using a chemical catalytic reaction and thermal energy. At least one electricity generator generates electrical energy by an electrochemical reaction of the hydrogen gas and oxygen. A fuel supply assembly supplies fuel to the reformer, and an oxygen supply assembly supplies oxygen to the at least one electricity generator. A heat exchanger is connected to the reformer and to the at least one electricity generator. The heat exchanger supplies thermal energy of the reformer, during initial operation of the system, to the at least one electricity generator so as to pre-heat the at least one electricity generator.
Abstract:
A device comprises a multi-layered thin film having excellent adhesion due to the method of fabricating the same. More particularly, the device includes a multi-layered thin film consisting of a tantalum nitride layer, a tantalum layer formed on the tantalum nitride layer, and a gold thin film formed on the tantalum layer.
Abstract:
A fuel cell system that effectively processes a flue gas generated from a heat source of a fuel reforming apparatus. The fuel reforming apparatus generates a reforming gas containing hydrogen through a reformation reaction of the fuel from a fuel supply, and a fuel cell main body generates electrical energy through an electrochemical reaction of the reforming gas with an oxidizing agent. The fuel reforming apparatus includes a reforming reaction part and a heat source. The reforming reaction part induces a reforming reaction in the fuel, and the heat source provides heat energy to the reforming reaction part. A flue gas postprocessor induces an oxidation-reduction reaction in a flue gas exhausted by a combustion reaction of the heat source to decrease toxic ingredients, such as CO, hydrocarbons, and NOx, in the flue gas.
Abstract:
An evaporator for a fuel cell system generating steam used for a steam reforming reaction provides an evaporator including a body having an inner space formed by a hollow for allowing a flow of a fluid, and a plurality of cell barrier members dividing the inner space into a plurality of spaces and having heat conductivity. The spaces include at least one first space for allowing a flow of a flue gas and at least one second space for allowing a flow of water.
Abstract:
A display apparatus including a circuit board and a surface grounded portion which is disposed on an end portion of the circuit board and formed of a conductive layer. The display apparatus may include a signal receiver mounted on the circuit board, the signal receiver receiving a signal. The display apparatus may include a signal processor mounted on the circuit board, the signal processor processing signals received by the signal receiver.