Abstract:
Disclosed is a sensor for measuring the amount of an analyte to be detected in human interstitial fluid, comprising a micro-cantilever sensing unit which includes: a first substrate; a micro-cantilever which is substantially in parallel with the first substrate and one end of which is supported onto the first substrate; a gold film formed onto at least one side of the micro-cantilever; a protein layer formed on the gold film, the protein layer being used to adsorb, at a surface thereof, the analyte to be detected in human interstitial fluid; a driving electrode provided on the first substrate; a micro-cantilever electrode which is provided on the first substrate at a position where the micro-cantilever is supported, and which is cooperated with the driving electrode so as to drive the micro-cantilever to produce resonance in a direction perpendicular to the first substrate; and a detecting electrode which is provided on the first substrate and which is cooperated with the micro-cantilever electrode so as to detect resonance frequency of the micro-cantilever. The present invention also relates to a fluid channel unit, a sensor system, and a method for measuring the amount of an analyte to be detected in human interstitial fluid.
Abstract:
The present invention relates to a newly discovered 44 kD isoform of Pim-1 kinase made in human cells, and to the gene and messenger RNA for the 44 kilodalton isoform. The invention further describes methods and compounds for treating, especially prostate and hematopoietic cancer, by inhibiting expression of the 44 kD isoform of Pim-1 kinase, or its ability to phosphorylate Etk kinase and breast cancer resistance protein (BCRP).
Abstract:
The present invention discloses a spectral measurement method via continuous light source and discrete light source, and a measurement instrument for non-invasive detection of human body tissue components. Said instrument includes an incident unit, a probe, a receiving unit and a data processing unit. Said composite spectral measurement method improves or strengthens the output light intensity at the wavelength that carries information of the target component within human body. It enables the spectral detection in the whole wavelength range, and thus significantly enhances the SNR of the detecting system. In the non-invasive detection instrument, light from both the continuous light source and discrete light source can be firstly selectively light-split by AOTF, or AOTF conducts light-splitting for the continuous light source, while the discrete light source LD is controlled by a spatial chopper. When data of the spectral curves achieved from said continuous light source and discrete light source are processed, data acquired under different measuring modes can be compared.
Abstract:
A light source pa light of a plurality of wavelengths of a near infrared region, and a spectroscopic part selects a wavelength subjected to absorption by lactic acid as a measuring wavelength from measuring light of a plurality of wavelengths emitted from the light source part. A probe comes into contact with an organism measuring portion and irradiates the organism measuring portion with the measuring light of the wavelength selected by the spectroscopic part, while a photoreceiving part detects transmitted/scattered light of the measuring light incident upon the organism measuring portion. A light signal detected by the photoreceiving part is converted to absorbance in a signal processing part, so that the concentration of lactic acid is calculated by a host computer serving as an arithmetic-control part and displayed on a display part. No reagent is required, while difference between lactic acid concentrations varied with measuring portions can also be noninvasively measured.
Abstract:
A method of quantitative analysis of a specific component of an object to be measured comprises steps of measuring an energy spectrum of light transmitted through or reflected from the object, dividing the energy spectrum into a plurality of wavelength domains, thereby obtaining a plurality of partial energy spectra, normalizing the plurality of partial energy spectra within each wavelength domain using an energy measured at a predetermined wavelength contained in each wavelength domain, and performing the quantative analysis by multivariate analysis using the plurality of partial energy spectra having been normalized.
Abstract:
An apparatus and method for optically measuring concentrations of components allow enhancement in measurement accuracy of concentration. The apparatus includes a cell, a light irradiator, a photodetector, and an arithmetic unit. The cell presents different optical path lengths at different locations and is to contain a sample therein. The light irradiator, which includes a variable-wavelength laser generator and a measuring system composed of convex lenses, outputs a collimated, enlarged laser beam, and makes the laser beam incident upon the cell. The photodetector comprises a multiplicity of photodetectors arranged in parallel to the surface of the cell, so that it can detect intensity of rays of transmitted light that have traveled over different optical path lengths at positions of an equal distance from the cell. The arithmetic unit, receiving a signal from the individual photodetectors, calculates concentrations of components in the sample based on optimum optical path lengths for different wavelengths and values of transmitted light at positions of the optimum optical path lengths, and further outputs calculation results.
Abstract:
A method of detecting a concentration of a target component by using a reference wavelength includes: defining a wavelength at which a light intensity is insensitive to the variation of the target component concentration as a reference wavelength for the target component; detecting spectra at both the reference wavelength and a further measuring wavelength; processing the spectrum detected at the further measuring wavelength, with the spectrum detected at the reference wavelength as an inner reference, to obtain a characteristic spectrum including specific information of the target component; building a calibration model between the characteristic spectrum and the concentration of the target component; and determining the concentration of the target component based on the calibration model.
Abstract:
A method of detecting a concentration of a target component by using a reference wavelength comprises: defining a wavelength at which a light intensity is insensitive to the variation of the target component concentration as a reference wavelength for the target component; detecting spectra at both the reference wavelength and a further measuring wavelength; processing the spectrum detected at the further measuring wavelength, with the spectrum detected at the reference wavelength as an inner reference, to obtain a characteristic spectrum including specific information of the target component; building a calibration model between the characteristic spectrum and the concentration of the target component; and determining the concentration of the target component based on the calibration model.
Abstract:
This invention relates to an optical detection method for non-contact measuring an object and separating the surface and deep information of a medium in an object. A light beam that irradiates on the object from an incident unit is received by a receiving unit and detected by a detector. The separation of the surface and deep information of the medium can be achieved by a measuring system, wherein the optical probes don't contact the object. In the present invention, the incident unit and receiving unit can be configured according to polarization method, optical baffle method, space imaging method and Brewster angle method etc.
Abstract:
To project measuring light with good reproducibility onto the measuring part of a measured object so that measurement conditions can always be constant. An optical measuring apparatus is equipped with a spectroscopic analyzer that detects the spectral intensity of the reflected light of measuring light projected onto a human hand. Spectroscopic analyzer moves in the direction" of the X-axis, Y axis, and Z axis, and around the Z axis by a moving mechanism. During the registration of the measuring part of the human hand, a CCD camera takes a picture of the human hand, and the operator selects a part having a feature from the pattern of the taken image. During the spectrometry, the CCD camera again takes a picture of the human hand. The optical measuring apparatus then detects the registered feature part on the currently taken image, moves spectroscopic analyzer by moving mechanism, and projects measuring light onto the registered feature part.