Abstract:
A semiconductor component including: a substrate, at least one semiconductor chip arranged on the substrate and at least one passive device likewise arranged on the substrate. The passive device is mounted with its underside on the substrate. The semiconductor component further includes an interspace disposed between the underside of the passive device and the substrate. The interspace is filled with an underfilling material. In order to avoid the solder pumping effect, the upper side and the lateral sides of the passive device are also embedded in a plastic compound.
Abstract:
A semiconductor device includes a plastic housing and a semiconductor chip, wherein the semiconductor chip includes an active top side and a rear side. An interposer is arranged on the active top side of the semiconductor chip. At least a portion of the interposer is embedded into the plastic housing, while the top side of the interposer forms the top side of the semiconductor device. A top side fitting shape is arranged on the top side of the interposer, where the top side fitting shape has a predetermined radius of curvature that is free of plastic housing composition, and the top side fitting shape has a convex or concave lens-shaped sphere segment shape.
Abstract:
A heat sink for surface-mounted semiconductor devices is provided on a superordinate circuit board of an electronic module. The heat sink includes a three-dimensionally structured thermally conductive plate with a press-on region and snap-action hooks. The snap-action hooks are arranged approximately at right angles with respect to the press-on region and are spring-elastically connected to the press-on region of the heat sink via a spring-elastic connecting region of the heat sink. The snap-action hooks engage with edge regions of a thermally conductive coupling plate with the press-on region generating pressure. The coupling plate is fixed to a rear side of a semiconductor chip of the surface-mounted semiconductor device.
Abstract:
A covering element for covering subassemblies having a substrate and at least one component disposed thereon and to be protected, in particular, a semiconductor component, includes at least one substantially planar area for covering the at least one component to be protected, one or more moldings serving for mechanical support, at least one of the moldings being in contact with the substrate and/or a supporting element disposed on the substrate after the covering element has been mounted on the subassembly, and the planar area and the molding being disposed such that, in the event of pressure on the covering element, no displacement of the at least one component (4) to be protected occurs.
Abstract:
An electronic component with at least one semiconductor chip and a wiring layer are described. The wiring layer has elastic contact elements of low mechanical strength in the spatial directions x, y and z, which can be electrically connected to corresponding contact terminal areas of a printed circuit board. The semiconductor chip or the wiring layer additionally has at least two spacers for the mechanical connection to a printed circuit board. A method for producing the electronic component is also described.
Abstract:
In one embodiment, a semiconductor device includes a glass substrate, a semiconductor substrate disposed on the glass substrate, and a magnetic sensor disposed within and/or over the semiconductor substrate.
Abstract:
In one embodiment, a semiconductor package includes an isolating container having a recess, which forms an inner membrane portion and an outer rim portion. The rim portion is thicker than the membrane portion. The package includes a semiconductor chip disposed in the recess and a backplane disposed under the membrane portion of the isolating container.
Abstract:
A semiconductor device includes a plastic housing and a semiconductor chip, wherein the semiconductor chip includes an active top side and a rear side. An interposer is arranged on the active top side of the semiconductor chip. At least a portion of the interposer is embedded into the plastic housing, while the top side of the interposer forms the top side of the semiconductor device. A top side fitting shape is arranged on the top side of the interposer, where the top side fitting shape has a predetermined radius of curvature that is free of plastic housing composition, and the top side fitting shape has a convex or concave lens-shaped sphere segment shape.
Abstract:
A semiconductor module and a method for producing the same is disclosed. In one embodiment, the semiconductor module has adjacent regions on a common wiring substrate in a common plastic housing composition. The regions are thermally decoupled by a thermal barrier. Semiconductor chips whose evolution of heat loss differs are arranged in these thermally separate regions, the thermal barrier ensuring that the function of the more thermally sensitive semiconductor chip is not impaired by the heat-loss-generating semiconductor chip.
Abstract:
Semiconductor module comprising semiconductor chips in a plastic housing in separate regions and method for producing the sameThe invention relates to a semiconductor module (9) comprising semiconductor chips (1, 2) in a plastic housing (3) in separate regions (4, 5), and to a method for producing the same. In this case, the semiconductor module (9) has adjacent regions (4, 5) on a common wiring substrate (7) in a common plastic housing composition (6), said regions being thermally decoupled by a thermal barrier (8). Semiconductor chips whose evolution of heat loss differs are arranged in these thermally separate regions (4, 5), the thermal barrier (8) ensuring that the function of the more thermally sensitive semiconductor chip (2) is not impaired by the heat-loss-generating semiconductor chip (1).