Abstract:
A film is described comprising a (meth)acrylic polymer and a polyvinyl acetal (e.g. butyral) resin. In some embodiments, the film has a glass transition temperature (i.e. Tg) ranging from 30° C. to 60° C. In some embodiments, the film has a gel content of at least 20% or greater. In some embodiments, the film has an elongation at break of at least 175%. The film typically comprises photoinitiator as a result of the method by which the film was made. The film may be a monolithic film or a layer of a multilayer film.
Abstract:
Optical devices include a light source and an optical article, where the optical article is an acid-free, non-yellowing pressure sensitive adhesive light guide. The light source is optically coupled to the light guide such that light emitted by the light source enters the light guide and is transported within the light guide by total internal reflection. The light guide includes a plurality of features oriented to extract light being transported within the light guide.
Abstract:
There is provided an article having a release liner and a pressure sensitive adhesive composition disposed along a major surface of the release liner, where the pressure sensitive adhesive composition has at least 50 wt-% of polymerized units derived from alkyl meth(acrylate) monomer(s); and 0.2 to 15 wt-% of at least one crosslinking monomers comprising a (meth)acrylate group and a C6-C20 olefin group, the olefin group being optionally substituted. In another embodiment, an adhesive composition is described comprising a syrup comprising i) a free-radically polymerizable solvent monomer; and ii) a solute (meth)acrylic polymer comprising polymerized units derived from one or more alkyl(meth)acrylate monomers; wherein the syrup comprises at least one crosslinking monomer or the (meth)acrylic solute polymer comprises polymerized units derived from at least one crosslinking monomer, the crosslinking monomer comprising a (meth)acrylate group and a C6-C20 olefin group, the olefin group being optionally substituted.
Abstract:
The present disclosure generally relates to conformable stretch release adhesive and/or stretch-releasable, adhesive articles that are capable of attaching or adhering to a substrate and that can be removed from the substrate without causing damage to the substrate. The present disclosure also generally relates to methods of making and using such adhesive articles.
Abstract:
The disclosure relates to a curable composition comprising: a polymerizable epoxy-acrylate resin composition having a complex viscosity at 25° C. and 1 Hz frequency of at least about 4500 Pa-s and a probe tack peak force of at least about 300 kPa; and abrasive particles partially or fully embedded in the polymerizable epoxy-acrylate resin composition. The disclosure also relates to cured compositions formed from such curable compositions, wherein the abrasive particles are partially or fully embedded in the cured composition. In addition, the disclosure relates to abrasive articles made from such cured compositions as well as methods for making abrasive articles.
Abstract:
A method of making a resin composition is described comprising providing a mixture of boron nitride particles and cellulose nanocrystals and combining the mixture with a resin composition. The weight ratio of boron nitride to cellulose nanocrystals typically ranges from 99.9:0.1 to 90:10. The resin composition can have a viscosity at least a 5, 10, 15, 20 or 25% lower than the same composition without the cellulose nanocrystals, which facilitate processing efficiency and is also amenable to incorporating higher boron nitride concentrations into the resin composition. Also described is a (e.g. powder) composition comprising premixed boron nitride particles and cellulose nanocrystals and resin composition comprising such (e.g. powder) composition.
Abstract:
Pressure sensitive adhesive compositions are described comprising at least one low Tg ethylenically unsaturated monomer, and at least one silsesquioxane polymer crosslinker comprising a plurality of ethylenically unsaturated groups. The low Tg ethylenically unsaturated monomer typically has a Tg no greater than 10° C. In some embodiments, the composition comprises at least 50, 55, 60, 65, or 70 wt-% of low Tg ethylenically unsaturated monomer. The low Tg ethylenically unsaturated monomer is typically an alkyl (meth)acrylate comprising 4 to 20 carbon atoms. In another embodiment, an adhesive composition is described comprising a syrup. The syrup comprising i) a free-radically polymerizable solvent monomer; ii) a solute (meth)acrylic polymer comprising polymerized units derived from one or more alkyl (meth)acrylate monomers, and iii) at least one silsesquioxane polymer crosslinker comprising a plurality of ethylenically unsaturated groups. The free-radically polymerizable solvent monomer, polymerized units of the solute (meth)acrylic polymer, or a combination thereof comprise a low Tg ethylenically unsaturated monomer. Also described are pressure sensitive adhesive articles and method of preparing adhesive articles.
Abstract:
A pressure sensitive adhesive composition is described comprising at least 50 wt-% of polymerized units derived from alkyl meth(acrylate) monomer(s); and 0.2 to 15 wt-% of at least one cross-linking monomers comprising a (meth)acrylate group and a C6-C20 olefin group, the olefin group being optionally substituted. In another embodiment, an adhesive composition is described comprising a syrup comprising i) a free-radically polymerizable solvent monomer; and ii) a solute (meth)acrylic polymer comprising polymerized units derived from one or more alkyl (meth)acrylate monomers; wherein the syrup comprises at least one crosslinking monomer or the (meth)acrylic solute polymer comprises polymerized units derived from at least one crosslinking monomer, the crosslinking monomer comprising a (meth)acrylate group and a C6-C20 olefin group, the olefin group being optionally substituted. In yet other embodiments, methods of preparing adhesive compositions are described.
Abstract:
Curable and cured compositions are provided that can contain a significant amount of a renewable material based on vegetable oil. More particularly, the curable compositions contain an acid-modified epoxidized vegetable oil (acid-modified EVO) and a (meth)acrylic copolymer having pendant carboxylic acid groups. When the curable composition is reacted to form a cured composition, the acid-modified EVO, which contains greater than one epoxide group per molecule, functions to crosslink the (meth)acrylic copolymer by reacting with the pendant carboxylic acid groups. If the (meth)acrylic copolymer is elastomeric, the cured composition can be a pressure-sensitive adhesive.
Abstract:
Pressure-sensitive adhesives that have good performance characteristics under typical use conditions and that later can be degraded and/or removed readily under basic conditions are provided. More specifically, the pressure-sensitive adhesives contain a copolymeric (meth)acrylic-based elastomeric material prepared from a polymerizable material that contains a (meth)acrylate monomer having both a (meth)acryloyl group plus an ester linkage that is not part of a (meth)acryloyl group.