Abstract:
The present disclosure generally relates to methods of forming barrier assemblies. Some embodiments include application and removal of a protective layer followed by application of a topsheet. Some embodiments include application and removal of a protective layer including a release agent and a monomer.
Abstract:
Urea (multi)-(meth)acrylate (multi)-silane precursor compounds, synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds, either neat or in a solvent, and optionally with a catalyst, such as a tin compound, to accelerate the reaction. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi)-(meth)acrylate (multi)-silane precursor compound synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making the urea (multi)-(meth)acrylate (multi)-silanes and their use in composite films and electronic devices are described.
Abstract:
The present disclosure provides a curable, one-part epoxy/thiol resin composition. The composition comprises an epoxy/thiol resin mixture including: an epoxy resin component including an epoxy resin having at least two epoxide groups per molecule, a thiol component including a polythiol compound having at least two primary thiol groups, and a nitrogen-containing catalyst for the epoxy resin. The epoxy/thiol resin mixture further includes metal nanoparticles (e.g., silver nanoparticles, copper nanoparticles, or both), dispersed in the epoxy/thiol resin mixture. The present disclosure provides a method of curing a curable, one-part epoxy/thiol resin composition, including providing a curable, one-part epoxy/thiol resin composition and heating the composition to a temperature of at least 50° C.
Abstract:
A composite particle that includes: a fluorescent semiconductor core/shell nanoparticle (preferably, nanocrystal); and a stabilizing additive of the formula (I), wherein R1 is a hydrocarbyl group, including aryl, alkaryl, alkyl or aralkyl, preferably at least one of R1 is aryl or alkaryl, more preferably at least two are aryl or alkaryl; R2 is R1 when a is one and a C1-C10 divalent alkylene when a is 2; Z is P, As or Sb.
Abstract:
A composite particle that includes: a fluorescent semiconductor core/shell nanoparticle (preferably, nanocrystal); and a stabilizing additive of a (meth)acrylate copolymer having pendent phosphine, arsine or stibine groups.
Abstract:
A composite particle that includes: a fluorescent semiconductor core/shell nanoparticle (preferably, nanocrystal); and a stabilizing additive of a (meth)acrylate copolymer having pendent phosphine, arsine or stibine groups.
Abstract:
Urea (multi)-(meth)acrylate (multi)-silane precursor compounds, synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds, either neat or in a solvent, and optionally with a catalyst, such as a tin compound, to accelerate the reaction. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi)-(meth)acrylate (multi)-silane precursor compound synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making the urea (multi)-(meth)acrylate (multi)-silanes and their use in composite films and electronic devices are described.
Abstract:
Compositions of matter described as urea (multi)-urethane (meth)acrylate-silanes having the general formula RA—NH—C(O)—N(R4)—R11—[O—C(O)NH—RS]n, or RS—NH—C(O)—N(R4)—R11—[O—C(O)NH—RA]n. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi)-urethane (meth)acrylate-silane precursor compound. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making such urea (multi)-urethane (meth)acrylate-silane precursor compounds, and their use in composite films and electronic devices are also described. Methods of using multilayer composite films as barrier films in articles selected from solid state lighting devices, display devices, and photovoltaic devices are also described.
Abstract:
Dental compositions are described comprising an addition-fragmentation agent of the formula: wherein R1, R2 and R3 are each independently Zm-Q-, a (hetero)alkyl group or a (hetero)aryl group with the proviso that at least one of R1, R2 and R3 is Zm-Q-; Q is a linking group have a valence of m+1; Z is an ethylenically unsaturated polymerizable group; m is 1 to 6; each X1 is independently —O— or —NR4—, where R4 is H or C1-C4 alkyl; and n is 0 or 1. Also described are dental articles prepared from a dental composition comprising an addition-fragmentation agent and methods of treating a tooth surface.
Abstract:
Addition-fragmentation agents of the formula are disclosed having the following functional groups: 1) a labile addition-fragmentation group that can cleave and reform to relieve strain, 2) at least two surface-binding functional groups that associate with the surface of a substrate.