Abstract:
A waveguide based variable attenuator device including one or more attenuators each including a porous dielectric material; and a metal coating on the top of the dielectric material; and an actuator coupled to the attenuator. The actuator is configured to position, with nanometer resolution, the one or more attenuators in a waveguide configured and dimensioned to guide an electromagnetic wave having a frequency in a range of 100 gigahertz (GHz) to 1 terahertz (THz). The actuator controls at least one of a position or a volume of the one attenuator inserted in the waveguide to achieve a variable or pre-determined attenuation of the electromagnetic wave transmitted through waveguide.
Abstract:
A multi-step silicon etching process has been developed to fabricate silicon-based terahertz (THz) waveguide components. This technique provides precise dimensional control across multiple etch depths with batch processing capabilities. Nonlinear and passive components such as mixers and multipliers waveguides, hybrids, OMTs and twists have been fabricated and integrated into a small silicon package. This fabrication technique enables a wafer-stacking architecture to provide ultra-compact multi-pixel receiver front-ends in the THz range.
Abstract:
A set of antenna geometries for use in integrated arrays at terahertz frequencies are described. Two fabrication techniques to construct such antennas are presented. The first technique uses an advanced laser micro-fabrication, allowing fabricating advanced 3D geometries. The second technique uses photolithographic processes, allowing the fabrication of arrays on a single wafer in parallel.
Abstract:
A multi-pixel terahertz transceiver is constructed using a stack of semiconductor layers that communicate using vias defined within the semiconductor layers. By using a stack of semiconductor layers, the various electrical functions of each layer can be tested easily without having to assemble the entire transceiver. In addition, the design allows the production of a transceiver having pixels set 10 mm apart.
Abstract:
A system for wirelessly communicating between a base station and a mobile device, including a reflector integrated with a mobile device, wherein the reflector reflects carrier radiation transmitted from a base station, to form a reflection of the carrier radiation, and input data from the mobile device modulates a reflection coefficient of the reflector, thereby modulating the reflection such that the reflection of the carrier radiation carries the input data to the base station.