Abstract:
A system, method, device, and apparatus provide a dielectric waveguide splitter/bi-directional link. A dielectric substrate fabricated into a first Y-junction waveguide with a first port splitting into a first branch leading to a second port and a second branch leading to a third port. An angle between the first branch and the second branch is below ninety degrees (90°). The dielectric waveguide splitter enables millimeter-wave (mmWave) transmission between the first port and the second port while reducing feedback of the mmWave between the second and third port. Two Y-junction waveguides may be fabricated back-to-back to provide simultaneous bidirectional mmWave transmission at a single frequency.
Abstract:
A multi-pixel terahertz transceiver is constructed using a stack of semiconductor layers that communicate using vias defined within the semiconductor layers. By using a stack of semiconductor layers, the various electrical functions of each layer can be tested easily without having to assemble the entire transceiver. In addition, the design allows the production of a transceiver having pixels set 10 mm apart.
Abstract:
A data link, comprising a substrate; and an ink structure printed and/or marked on a substrate, wherein the structure directs an electric, magnetic, and/or electromagnetic wave between two locations.
Abstract:
An unmanned, automated aerial system is programmed to fly in a set pattern around an antenna. The antenna is supported by a structure on the ground, or attached to an aerostat, according to its operational wavelength, in order to avoid ground effects. The radiation pattern of the antenna under test is measured by an antenna onboard the aerial system. The positional data of both antennas is logged to account for any interference in the measurements due to atmospheric conditions.
Abstract:
A system, method, device, and apparatus provide a dielectric waveguide splitter/bi-directional link. A dielectric substrate fabricated into a first Y-junction waveguide with a first port splitting into a first branch leading to a second port and a second branch leading to a third port. An angle between the first branch and the second branch is below ninety degrees (90°). The dielectric waveguide splitter enables millimeter-wave (mmWave) transmission between the first port and the second port while reducing feedback of the mmWave between the second and third port. Two Y-junction waveguides may be fabricated back-to-back to provide simultaneous bidirectional mmWave transmission at a single frequency.