Abstract:
Multiple intake valves operatively associated in a common combustion chamber are advantageous in that the design achieves high output for an internal combustion engine. The subject modified cylinder head utilizes the advantages available in a multiple intake valve system, but further enhances the design by reducing heat rejection. In the subject modified cylinder head, three intake valves (38,40,42) having corresponding intake valve ports (26,28,30) and one exhaust valve (68) having an exhaust valve port (66) are operatively associated in a common combustion chamber. A reduction in heat rejection is achieved through a relationship between the cross-sectional areas of the intake and exhaust valve ports (26,28,30,66). The intake valve ports (26,28,30) are constructed so that their cross-sectional area is larger than about 69% of the combined cross-sectional area of the intake and the exhaust ports (26,28,30,66).
Abstract:
A differential comprises a pair of face gears, a carrier rotatably mounted between the face gears and a plurality of pinion gears rotatably mounted on the carrier and intermeshing with the face gears for differentially permitting one face gear to rotate relative to the other face gear. The pinion gears are each rotatably mounted in bearings and a lubrication system is provided for pumping lubricating fluid to the bearings for lubrication and cooling purposes. The lubrication system comprises a double-acting pump mounted adjacent to the carrier and a rocker arm pivotally mounted adjacent to each end of the pump. A first end of the rocker arm engages a cam attached to the carrier whereas a second thereof engages an end of a piston rod reciprocably mounted in the pump to pump lubricating fluid to the bearing.
Abstract:
An apparatus for testing internal combustion engine valves is provided. The apparatus includes a housing with a bore for receiving a seat fixture. The seat fixture, in turn, receives a seat insert. A valve is inserted into the apparatus so the valve head is received at the seat insert and the valve stem extends through the seat fixture and through an axial bore in the housing. One end of the valve engages an actuating apparatus that provides a lifting action of the valve so that the valve head moves off of the seat insert as well as a rotating action to the valve. Another actuator is provided to move the valve from a lifted position to a seated position. A heater is employed to heat the valve to high temperatures to simulate extreme operating conditions. A cooling system is also provided to rapidly cool the valve and associated elements to simulate a rapid cooling condition. A method for testing internal combustion engine valves is also disclosed.
Abstract:
A valve assembly for use in a dual compression/dual expansion engine having an internal housing operating within an external housing, the valve assembly having a valve element operating in a valve guide secured to the internal housing with a valve spring provided to ensure proper closure of the valve element, and a valve train subassembly extending coaxially about the valve spring, the valve train subassembly operating slidingly in the external housing of engine in response to a valve actuation means, such that the valve element and the valve train subassembly operate independently when the valve actuation means is not actuating the valve element.
Abstract:
In order to achieve great engine efficiency, heat, normally dissipated through the cooling system, is directed through the exhaust passage to increase the turbocharger output. Conventional iron base valve guides cannot operate effectively within the high temperature ranges. Therefore, ceramic valve guides capable of withstanding high temperature ranges are being used for increased engine durability. Unfortunately, ceramic valve guides are difficult to install into a cylinder head using any currently available techniques. The present invention provides a simple means for mounting a ceramic valve guide assembly (52) within a cylinder head (18). A ceramic sleeve (70) is inserted into a metallic sleeve (80). The ceramic sleeve (70) and the metallic sleeve (80) are machined so that an interference fit is obtained when assembled to define the valve guide assembly (52). The valve guide assembly (52) is installed into the cylinder head (18) in a normal manner. Proper selection of the dimensions and materials for the ceramic sleeve (70) and the metallic sleeve (80) will result in a design wherein the stresses and contact pressures of the ceramic sleeve (70), the metallic sleeve (80), and the cylinder head (18) are each kept reasonable at all conditions encountered during manufacturing, assembly, and operation of the engine.
Abstract:
Previously disclosed distributor fuel injection pumps for internal combustion engines offer the advantages of reduced size, weight, and cost of a fuel injection system. However, these pumps have not been able to provide relatively high fuel injection pressures which could improve fuel combustion for better fuel economy and lower noxious emissions. In contrast, the subject distributor fuel injection pump generates relatively high fuel injection pressures in a relatively compact arrangement. A semi-spherical nutator member freely rotatably mounted on an oblique journal of a drive shaft imparts high speed harmonic motion to at least one reciprocating pump plunger for pressurizing the fuel. A relatively large semi-spherical bearing interface between the nutator member and a pump housing accommodates very high pumping reaction loads. A distributor rotor for sequentially delivering the pressurized fuel to more than one engine combustion cylinder is rotatively driven by a planetary gear reduction mechanism coupled to the drive shaft. Very little force is required to adjust either the timing or quantity of fuel injection which are adjustable by angular movement of at either a normally stationary planetary ring gear or a fuel metering collar, respectively.
Abstract:
An accumulator type injection valve of simple construction and relatively large accumulator capacity has opposed inlet and outlet valves for alternately and intermittently communicating a single chamber with an inlet passage for receiving fuel from a pump and an outlet passage in further communication with an injection nozzle, the outlet valve being an inwardly opening needle valve responsive to fluid pressure within the chamber. In order to even further improve operating response of the injection valve, a dump valve relieves fluid pressure from the chamber below a preselected pressure.
Abstract:
A shaft arrangement for an axial piston pump assembly to couple to a rotatable member such as a gear therewith. A shaft extends at least partially through a housing chamber of the pump about a longitudinal axis. Reciprocating pistons are disposed within the chamber radially about the shaft. A cam unit is fitted over the shaft and provides an angled camming surface to engage the pistons. Bearing assemblies are fitted over the cam unit. An adapter can be fitted over the proximal end of the cam unit. The adapter has a distal surface which may abut the bearing assembly and be axially spaced from the cam unit, and an outer radial surface to engage the rotatable member. A clamping device provides a desired clamp load path between the rotatable member, the adapter, the cam unit, the bearing assemblies and the shaft.
Abstract:
A lash adjuster and a method for adjusting lash in an engine valve train are provided. A first component of the lash adjuster is formed from a first material having a first coefficient of thermal expansion. A second component of the lash adjuster is formed from a second material having a second coefficient of thermal expansion greater than the first coefficient of thermal expansion. The second component has an exterior dimension that is greater than or equal to a corresponding interior dimension of the first component when the lash adjuster is heated to an operating temperature.