Abstract:
Embodiments of the present invention provide pumps with features to reduce form factor and increase reliability and serviceability. Additionally, embodiments of the present invention provide features for gentle fluid handling characteristics. Embodiments of the present invention can include a pump having onboard electronics and features to prevent heat from the onboard electronics from degrading process fluid or otherwise negatively impacting pump performance. Embodiments may also include features for reducing the likelihood that fluid will enter an electronics housing.
Abstract:
Apparatus and a control system for monitoring (preferably digitally) and/or controlling pressure to a pneumatic load such as a proportional fluid control valve and using a measurement input from a fluid measurement device that responds to a flow rate, the liquid measurement input being used to control the pressure to the pneumatic load so that pneumatic load may be increased or decreased (to proportionally open or close the pneumatic valve) to change the flow rate of the fluid to a desired rate. The pneumatic load can also be adjusted (to proportionally open or close the pneumatic valve) to accommodate changes in temperature and viscosity of a fluid.
Abstract:
A fluid valve (700) is disclosed that incorporates a plunger (760) with a fluid channel (766). The plunger is connected to a (724) boss coupled to a diaphragm 720), this boss also includes a fluid channel (726) and the plunger and boss fluid channels are in fluid communication. The boss fluid channel opens to the backside of the diaphragm in the valve cavity (780) and permits substantially complete pressurization or evacuation of the volume behind the diaphragm in the valve. The substantially complete pressurization of the volume behind the diaphragm enables full closure of the diaphragm and improves contact of the diaphragm with the valve seat (712) thereby improving performance of the valve.
Abstract:
A pumping system with a pressure sensor positioned on the fill side and a pressure sensor on the dispense side to obtain and provide pressure information that can be used by a controller in determining various operating profiles. To avoid trapping air in a process fluid, a pressure sensor can be flush mounted or mounted at an angle on the sidewall of a feed chamber, a bottle, or a reservoir tank at or near the bottom or half-height. The pressure information obtained from the fill side can have many beneficial including filtration confirmation, air detection, and reduced pressure priming of a filter. The pumping system may further include a graphical user interface for displaying the operating profiles and various associated alarms in real time.
Abstract:
Embodiments of the invention provide a system, method and computer program product for reducing the hold-up volume of a pump. More particularly, embodiments of the invention can determine, prior to dispensing a fluid, a position for a diaphragm in a chamber to reduce a hold-up volume at a dispense pump and/or a feed pump. This variable home position of the diaphragm can be determined based on a set of factors affecting a dispense operation. Example factors may include a dispense volume and an error volume. The home position for the diaphragm can be selected such that the volume of the chamber at the dispense pump and/or feed pump contains sufficient fluid to perform the various steps of a dispense cycle while minimizing the hold-up volume. Additionally, the home position of the diaphragm can be selected to optimize the effective range of positive displacement.