Abstract:
Embodiments of the present invention provide pumps with features to reduce form factor and increase reliability and serviceability. Additionally, embodiments of the present invention provide features for gentle fluid handling characteristics. Embodiments of the present invention can include a pump having onboard electronics and features to prevent heat from the onboard electronics from degrading process fluid or otherwise negatively impacting pump performance. Embodiments may also include features for reducing the likelihood that fluid will enter an electronics housing.
Abstract:
Embodiments of the invention provide a system, method and computer program product for reducing the hold-up volume of a pump. More particularly, embodiments of the invention can determine, prior to dispensing a fluid, a position for a diaphragm in a chamber to reduce a hold-up volume at a dispense pump and/or a feed pump. This variable home position of the diaphragm can be determined based on a set of factors affecting a dispense operation. Example factors may include a dispense volume and an error volume. The home position for the diaphragm can be selected such that the volume of the chamber at the dispense pump and/or feed pump contains sufficient fluid to perform the various steps of a dispense cycle while minimizing the hold-up volume. Additionally, the home position of the diaphragm can be selected to optimize the effective range of positive displacement.
Abstract:
Embodiments of the present invention provide pumps with features to reduce form factor and increase reliability and serviceability. Additionally, embodiments of the present invention provide features for gentle fluid handling characteristics. Embodiments of the present invention can include a pump having onboard electronics and features to prevent heat from the onboard electronics from degrading process fluid or otherwise negatively impacting pump performance. Embodiments may also include features for reducing the likelihood that fluid will enter an electronics housing.
Abstract:
Apparatus and a control system for monitoring (preferably digitally) and/or controlling pressure to a pneumatic load such as a proportional fluid control valve and using a measurement input from a fluid measurement device that responds to a flow rate, the liquid measurement input being used to control the pressure to the pneumatic load so that pneumatic load may be increased or decreased (to proportionally open or close the pneumatic valve) to change the flow rate of the fluid to a desired rate. The pneumatic load can also be adjusted (to proportionally open or close the pneumatic valve) to accommodate changes in temperature and viscosity of a fluid.
Abstract:
A fluid valve (700) is disclosed that incorporates a plunger (760) with a fluid channel (766). The plunger is connected to a (724) boss coupled to a diaphragm 720), this boss also includes a fluid channel (726) and the plunger and boss fluid channels are in fluid communication. The boss fluid channel opens to the backside of the diaphragm in the valve cavity (780) and permits substantially complete pressurization or evacuation of the volume behind the diaphragm in the valve. The substantially complete pressurization of the volume behind the diaphragm enables full closure of the diaphragm and improves contact of the diaphragm with the valve seat (712) thereby improving performance of the valve.
Abstract:
A sensor comprises a sensor layer comprising a ceramic material; an adhesion layer comprising chromium, the adhesion layer adhered to one or more portions of a liquid facing surface of the sensor layer; and an isolator film comprising a polymer, the isolator film overlaying a liquid facing surface of the adhesion layer. The isolator film may be used to protect the sensor from corrosive and high temperature fluids, for example to protect the sensor from long term exposure to hot water between 85° C. and 100° C.
Abstract:
Embodiments of the present invention provide I/O systems, methods, and devices for interfacing pump controller(s) with control device(s) which may have different interfaces and/or signaling formats. In one embodiment, an I/O interface module comprises a processor, a memory, and at least two data communications interfaces for communicating with a pumping controller and a control device. The I/O interface module can receive discrete signals from the control device, interpret them accordingly and send the packets to the pump controller. The pump controller reads the packets and takes appropriate actions at the pump. The I/O interface module can interpret packets of data received from the pump controller and assert corresponding discrete signals to the control device. The I/O interface module is customizable and allows a variety of interfaces and control schemes to be implemented with a particular multiple stage pump without changing the hardware of the pump.
Abstract:
Embodiments of the invention provide a system, method and computer program product for reducing the hold-up volume of a pump. More particularly, embodiments of the invention can determine, prior to dispensing a fluid, a position for a diaphragm in a chamber to reduce a hold-up volume at a dispense pump and/or a feed pump. This variable home position of the diaphragm can be determined based on a set of factors affecting a dispense operation. Example factors may include a dispense volume and an error volume. The home position for the diaphragm can be selected such that the volume of the chamber at the dispense pump and/or feed pump contains sufficient fluid to perform the various steps of a dispense cycle while minimizing the hold-up volume. Additionally, the home position of the diaphragm can be selected to optimize the effective range of positive displacement.
Abstract:
A fluid valve incorporates a plunger with a fluid channel. The plunger is connected to a boss coupled to a diaphragm, this boss also includes a fluid channel and the plunger and boss fluid channels are in fluid communication. The boss fluid channel opens to the backside of the diaphragm in the valve cavity and permits substantially complete pressurization or evacuation of the volume behind the diaphragm in the valve. The substantially complete pressurization of the volume behind the diaphragm enables full closure of the diaphragm and improves contact of the diaphragm with the valve seat thereby improving performance of the valve.
Abstract:
Embodiments of the present invention provide I/O systems, methods, and devices for interfacing pump controller(s) with control device(s) which may have different interfaces and/or signaling formats. In one embodiment, an I/O interface module comprises a processor, a memory, and at least two data communications interfaces for communicating with a pumping controller and a control device. The I/O interface module can receive discrete signals from the control device, interpret them accordingly and send the packets to the pump controller. The pump controller reads the packets and takes appropriate actions at the pump. The I/O interface module can interpret packets of data received from the pump controller and assert corresponding discrete signals to the control device. The I/O interface module is customizable and allows a variety of interfaces and control schemes to be implemented with a particular multiple stage pump without changing the hardware of the pump.
Abstract translation:本发明的实施例提供了用于将泵控制器与可能具有不同接口和/或信令格式的控制设备接口的I / O系统,方法和设备。 在一个实施例中,I / O接口模块包括处理器,存储器和用于与泵送控制器和控制设备通信的至少两个数据通信接口。 I / O接口模块可以从控制设备接收离散信号,相应地解释它们,并将数据包发送到泵控制器。 泵控制器读取数据包,并在泵处采取适当的措施。 I / O接口模块可以解释从泵控制器接收的数据包,并将相应的离散信号声明给控制设备。 I / O接口模块是可定制的,允许使用特定的多级泵实现各种接口和控制方案,而无需更换泵的硬件。