Abstract:
A reflective mask blank that comprises a multilayer reflective film 13, protective film 14, and phase-shift film 16 for shifting a phase of the EUV light, which are formed in said order on a substrate 12. The protective film 14 is made of a material containing ruthenium as a main component, and an anti-diffusion layer 15 which is an oxidized layer containing ruthenium as a main component is formed on a surface of the protective film 14, or as a part of the protective film 14 on a side adjacent to the phase-shift layer 16, so as to inhibit counter diffusion in relation to the phase- shift film 16, thereby inhibiting the thermal diffusion between the protective film 14 and the material of the phase-shift film pattern. Also, a reflective mask and method of manufacture.
Abstract:
Disclosed is a mask blank substrate for use in lithography, wherein a main surface of the substrate satisfies a relational equation of (BA70−BA30)/(BD70−BD30)≧350 (%/nm), and has a maximum height (Rmax)≦1.2 nm in a relation between a bearing area (%) and a bearing depth (nm) obtained by measuring, with an atomic force microscope, an area of 1 μm×1 μm in the main surface on the side of the substrate where a transfer pattern is formed, wherein BA30 is defined as a bearing area of 30%, BA70 is defined as a bearing area of 70%, and BD70 and BD30 are defined to respectively represent bearing depths for the bearing area of 30% and the bearing area of 70%.
Abstract:
A reflective mask blank capable of facilitating the discovery of contaminants, scratches and other critical defects by inhibiting the detection of pseudo defects attributable to surface roughness of a substrate or film in a defect inspection using a highly sensitive defect inspection apparatus. The reflective mask blank has a mask blank multilayer film comprising a multilayer reflective film, obtained by alternately laminating a high refractive index layer and a low refractive index layer, and an absorber film on a main surface of a mask blank substrate, wherein, in the relationship between bearing area (%) and bearing depth (nm) as measured with an atomic force microscope for a 1 μm×1 μm region of the surface of the reflective mask blank on which the mask blank multilayer film is formed, the surface of the reflective mask blank satisfies the relationship of (BA70−BA30)/(BD70−BD30)≧60(%/nm) and maximum height (Rmax)≦4.5 nm.
Abstract:
Provided is a reflective mask blank capable of facilitating the discovery of contaminants, scratches and other critical defects by inhibiting the detection of pseudo defects attributable to surface roughness of a substrate or film in a defect inspection using a highly sensitive defect inspection apparatus. The reflective mask blank has a mask blank multilayer film comprising a multilayer reflective film, obtained by alternately laminating a high refractive index layer and a low refractive index layer, and an absorber film on a main surface of a mask blank substrate, wherein the root mean square roughness (Rms), obtained by measuring a 3 μm×3 μm region on the surface of the reflective mask blank on which the mask blank multilayer film is formed with an atomic force microscope, is not more than 0.5 nm and the power spectrum density at a spatial frequency of 1 μm−1 to 10 μm−1 is not more than 50 nm4.
Abstract:
A reflective mask blank for manufacturing a reflective mask capable of suppressing peeling of an absorber pattern while suppressing an increase in the thickness of an absorber film when EUV exposure is conducted in an atmosphere including hydrogen gas. A reflective mask blank comprises a substrate, a multilayer reflection film on the substrate, and an absorber film on the multilayer reflection film. The reflective mask blank is characterized in that: the absorber film includes an absorption layer and a reflectance adjustment layer; the absorption layer contains tantalum (Ta), nitrogen (N), and at least one added element selected from hydrogen (H) and deuterium (D); the absorption layer includes a lower surface region including a surface on the substrate side, and an upper surface region including a surface on the side opposite to the substrate; and the concentration (at. %) of the added element in the lower surface region and the concentration (at. %) of the added element in the upper surface region are different.
Abstract:
Provided is a reflective mask blank with which it is possible to further reduce the shadowing effect of a reflective mask, and also possible to form a fine and highly accurate phase-shift pattern. A reflective mask blank having, in the following order on a substrate, a multilayer reflective film and a phase-shift film that shifts the phase of EUV light, said reflective mask blank characterized in that the phase-shift film has a thin film comprising a metal-containing material that contains: ruthenium (Ru); and at least one element from among chromium (Cr), nickel (Ni), (Co), aluminum (Al), silicon (Si), titanium (Ti), vanadium (V), germanium (Ge), niobium (Nb), molybdenum (Mo), tin (Sn), tellurium (Te), hafnium (Hf), tungsten (W), and rhenium (Re).
Abstract:
Provided is a reflective mask blank for manufacturing a reflective mask capable of suppressing peeling of an absorber pattern while suppressing an increase in the thickness of an absorber film when EUV exposure is conducted in an atmosphere including hydrogen gas. A reflective mask blank (100) comprises a substrate (1), a multilayer reflection film (2) on the substrate, and an absorber film (4) on the multilayer reflection film. The reflective mask blank (100) is characterized in that: the absorber film (4) includes an absorption layer (42) and a reflectance adjustment layer (44); the absorption layer (42) contains tantalum (Ta), nitrogen (N), and at least one added element selected from hydrogen (H) and deuterium (D); the absorption layer (42) includes a lower surface region (46) including a surface on the substrate side, and an upper surface region (48) including a surface on the side opposite to the substrate; and the concentration (at. %) of the added element in the lower surface region (46) and the concentration (at. %) of the added element in the upper surface region (48) are different.
Abstract:
Provided is a reflective mask blank that enables to further reduce the shadowing effect of a reflective mask and form a fine and highly accurate absorber pattern. The reflective mask blank comprising a multilayer reflective film, an absorber film, and an etching mask film disposed on a substrate in this order, wherein the absorber film comprises a buffer layer and an absorption layer provided on the buffer layer, the buffer layer comprises a material comprising tantalum (Ta) or silicon (Si) and a film thickness of the buffer layer is 0.5 nm or more and 25 nm or less, the absorption layer comprises a material comprising chromium (Cr) and an extinction coefficient of the absorption layer with respect to EUV light is higher than the extinction coefficient of the buffer layer with respect to the EUV light, and the etching mask film comprises a material comprising tantalum (Ta) or silicon (Si) and a film thickness of the etching mask film is 0.5 nm or more and 14 nm or less.
Abstract:
Disclosed is a mask blank substrate for use in lithography, wherein a main surface of the substrate satisfies a relational equation of (BA70−BA30)/(BD70−BD30)≧350 (%/nm), and has a maximum height (Rmax)≦1.2 nm in a relation between a bearing area (%) and a bearing depth (nm) obtained by measuring, with an atomic force microscope, an area of 1 μm×1 μm in the main surface on the side of the substrate where a transfer pattern is formed, wherein BA30 is defined as a bearing area of 30%, BA70 is defined as a bearing area of 70%, and BD70 and BD30 are defined to respectively represent bearing depths for the bearing area of 30% and the bearing area of 70%.
Abstract:
Provided is a multilayer reflective film formed substrate formed with a fiducial mark for accurately managing coordinates of defects. A multilayer reflective film formed substrate is formed with a multilayer reflective film, which is adapted to reflect EUV light, on a substrate and a fiducial mark which serves as a reference for a defect position in defect information is formed on the multilayer reflective film. The fiducial mark includes a main mark for determining a reference point for the defect position and auxiliary marks arranged around the main mark. The main mark has a point-symmetrical shape and has a portion with a width of 200 nm or more and 10 μm or less with respect to a scanning direction of an electron beam writing apparatus or defect inspection light.