Abstract:
A printed circuit board has a core substrate, a first conductive pattern on first surface of the substrate, a second conductive pattern on second surface of the substrate, and a through-hole conductor formed of plated material through the substrate such that the conductor is connecting the first and second patterns. The plated material is filling a through hole in the substrate, the substrate includes an insulation layer including inorganic fiber and resin, a first resin layer on one surface of the insulation layer and having the first surface of the substrate, and a second resin layer on the opposite surface of the insulation layer and having the second surface of the substrate, the first and second resin layers do not contain inorganic fiber material, and the sum of thicknesses of the first and second resin layers is set in the range of 20% or less of thickness of the substrate.
Abstract:
A wiring substrate includes a first insulating layer, a first conductor layer, a second insulating layer, a second conductor layer, a connection conductor, and a coating film. The first conductor layer includes a conductor pad and a wiring pattern such that the conductor pad is formed in contact with the connection conductor and that the wiring pattern is covered by the coating film, the conductor pad has a surface facing the second insulating layer and having first surface roughness higher than surface roughness of a surface of the wiring pattern, and the coating film has opening exposing a portion of the surface of the conductor pad from the coating film and having area larger than area of interface between the conductor pad and the connection conductor and that the connection conductor is formed on the portion of the surface of the conductor pad and is separated from the coating film.
Abstract:
A shield cap for protecting an electronic component includes a cap member having a side wall portion and a ceiling portion, and a conductive film formed on the cap member such that the conductive film is formed to shield electromagnetic waves. The side wall and ceiling portions are forming accommodation space to accommodate electronic component, the ceiling portion has a first surface facing the space and a second surface on the opposite side, the side wall portion has a third surface facing the ceiling portion, a fourth surface on the opposite side, a fifth surface facing the space, and a sixth surface on the opposite side, and the side wall portion is formed such that the sixth surface has a first inclined portion increasing distance to the space from the third toward fourth surfaces and a second inclined portion increasing distance to the space from the fourth toward third surfaces.
Abstract:
A method for manufacturing an electronic component attached board includes preparing a first support plate, forming aggregate wiring boards on the first plate such that the aggregate boards each including wiring board side by side are formed in connected state on surface of the first plate, separating the first plate from the aggregate boards, dividing the aggregate boards into individual aggregate boards each including the wiring boards, bonding a second support plate to surface of each individual aggregate board such that each individual aggregate board is bonded to surface of the second plate, mounting electronic components on the wiring boards on the second plate such that each wiring board has an electronic component thereon, dividing the wiring boards into individual wiring boards, and separating the second plate from the individual wiring board. The surface of the first plate has size larger than size of the surface of the second plate.
Abstract:
A printed wiring board includes a buildup wiring layer including resin insulation layers and conductive layers such that the conductive layers are laminated on the resin insulation layers, respectively, first pads formed in a center portion of a first surface of the buildup wiring layer and positioned to connect an electronic component, second pads formed on a periphery portion of the first surface of the buildup wiring layer and positioned to connect an external wiring board, a solder layer including a plating material and formed on the first pads such that the solder layer is formed on each of the first pads, conductive posts including a plating material and formed on the second pads, respectively, and a seed layer including first seed layer portions formed between the first pads and the solder layer and second seed layer portions formed between the second pads and the conductive posts.
Abstract:
An interposer includes an insulating plate including insulating layers and having first, second, third and fourth surfaces such that the second surface is on the opposite side of the first surface, the third surface is perpendicular to the first surface, the fourth surface is on the opposite side of the third surface, and the insulating layers are laminated on the third surface, and conductor layers formed in the insulating plate such that each conductor layer is interposed between adjacent insulating layers and includes straight conductors having first electrodes exposed from the first surface and second electrodes exposed from the second surface, respectively. The insulating layers include second insulating layers each sandwiched by adjacent conductor layers such that each second insulating layer integrally has an inter-conductor-layer insulating layer portion formed between the adjacent conductor layers and inter-conductor insulating layer portions formed between adjacent straight conductors in a respective conductor layer.
Abstract:
A wiring board includes a unit section including product portions, and a frame section formed along the periphery of the unit section. The frame section has a dummy pattern which includes conductive portions and connection lines such that the connection lines are formed in spaces between the conductive portions and linking the conductive portions.
Abstract:
A wiring substrate includes a first conductor layer, an insulating layer on the first layer such that the insulating layer is covering the first layer, a second conductor layer on the insulating layer such that the insulating layer is formed between the first and second layers, the connection conductors penetrating through the insulating layer and connecting the first and second layers, and a coating film formed at least partially on surface of the first layer such that the film improves adhesion between the first layer and insulating layer. The first layer includes pads and wiring patterns such that the pads are in contact with the connection conductors and that the patterns have surfaces facing the insulating layer and covered by the film, and the pads have roughened surfaces facing the insulating layer and having first surface roughness that is higher than second surface roughness of the surfaces of the patterns.
Abstract:
A printed wiring board includes a core substrate, a first build-up layer, and a second build-up layer. The core substrate includes a core layer, through-hole conductors and through-hole lands. Metal foils of the through-hole lands in the core substrate have mat surfaces at interfaces of the core layer in the core substrate, metal foils of via lands in the build-up layers have inner mat surfaces at interfaces of insulating layers, and metal foils of outermost conductor layers in the build-up layers have outermost mat surfaces at interfaces of outermost insulating layers. Ten-point average roughness (RzI1) of the inner first mat surface is smaller than each of ten-point average roughness (Rz1, Rz2) of the mat surfaces and ten-point average roughness (RzO1, RzO2) of the outermost mat surfaces. Ten-point average roughness (RzI2) of the inner second mat surface is smaller than each of the ten-point average roughness (Rz1, Rz2, RzO1, RzO2).
Abstract:
A printed wiring board includes: a core substrate having a core layer, first and second conductor layers, and through-hole conductors penetrating through the core layer and connecting the conductor layers; and first and second build-up layers each including an insulating layer, an inner side conductor layer, an outermost insulating layer, an outermost conductor layer, and a solder resist layer. Each of the conductor layers includes conductor circuits having substantially a trapezoid cross-sectional shape, and spaces between adjacent conductor circuits, and includes a metal foil, a seed layer, and an electrolytic plating film. The inner side conductor layers have the smallest minimum circuit width, the smallest minimum space width and the largest base angle among the conductor layers. The insulating layers have the smallest ten-point average roughness rz3, rz7 among the ten-point average roughness rz3, rz7, rz1, rz2, rz5 and rz9 of the core layer, insulating layers and outermost insulating layers.