Abstract:
An underfill composition comprises a curable resin, a plurality of filler particles loaded within the resin, the filler particles comprising at least 50 weight % of the underfill composition. The filler particles comprise first filler particles having a particle size of from 0.1 micrometers to 15 micrometers and second filler particles having a particle size of less than 100 nanometers. A viscosity of the underfill composition is less than a viscosity of a corresponding composition not including the second filler particles.
Abstract:
Embodiments of the present disclosure are directed to techniques and configurations for an integrated circuit (IC) package having an underfill layer with filler particles arranged in a generally random distribution pattern. In some embodiments, a generally random distribution pattern of filler particles may be obtained by reducing an electrostatic charge on one or more components of the IC package assembly, by applying a surface treatment to filler to reduce filler electrical charge, by applying an electric force against the filler particles of the underfill material in a direction opposite to a direction of gravitational force, by using an underfill material with a relatively low maximum filler particle size, and/or by snap curing the underfill layer at a relatively low temperature. Other embodiments may be described and/or claimed.
Abstract:
Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods and structures may include modifying an underfill material with one of a thiol adhesion promoter, an azole coupling agent, surface modified filler, and peroxide based cross-linking polymer chemistries to greatly enhance adhesion in package structures utilizing the embodiments herein.
Abstract:
Embodiments of a microelectronic assembly include: a first integrated circuit (IC) die having a first memory circuit and a second memory circuit; a second IC die; a third IC die; and a package substrate. The second IC die is between the first IC die and the package substrate. The first IC die includes: a first portion comprising a first active region and a first backend region in contact with the first active region; and a second portion comprising a second active region and a second backend region in contact with the second active region. The first memory circuit is in the first portion, the second memory circuit is in the second portion, the first active region comprises transistors that are larger than transistors in the second active region, and the first backend region comprises conductive traces that have a larger pitch than conductive traces in the second backend region.
Abstract:
Methods of forming microelectronic packaging structures and associated structures formed thereby are described. Those methods and structures may include forming a wafer level underfill (WLUF) material comprising a resin material, and adding at least one of a UV absorber, a sterically hindered amine light stabilizer (HALS), an organic surface protectant (OSP), and a fluxing agent to form the WLUF material. The WLUF is then applied to a top surface of a wafer comprising a plurality of die.
Abstract:
Underfill materials for fabricating electronic devices are described. One embodiment includes an underfill composition including an epoxy mixture, an amine hardener component, and a filler. The epoxy mixture may include a first epoxy comprising a bisphenol epoxy, a second epoxy comprising a multifunctional epoxy, and a third epoxy comprising an aliphatic epoxy, the aliphatic epoxy comprising a silicone epoxy. The first, second, and third epoxies each have a different chemical structure. Other embodiments are described and claimed.
Abstract:
Methods for covalently and indelibly anchoring a polyacrylate polymer using a UV-induced polymerization process in the presence of a photoinitiator to an oxide surface are disclosed herein. The methods and compositions prepared by the methods can be used as indelible marking materials for use on microelectronic packages and as solder and sealant barriers to prevent overspreading of liquids on the oxide surfaces of microelectronic packages. The polyacrylate polymers are covalently linked to the oxide surface by use during the printing and UV-curing process of an adhesion promoter having as a first domain an oxide-reactive silyl group, bonded via a linker to an acrylate-reactive group.
Abstract:
Embodiments of a microelectronic assembly include: a first integrated circuit (IC) die having a first memory circuit and a second memory circuit; a second IC die; a third IC die; and a package substrate. The first IC die is between the second IC die and the package substrate. The first IC die comprises: a first portion comprising a first active region and a first backend region in contact with the first active region; and a second portion comprising a second active region and a second backend region in contact with the second active region. The first memory circuit is in the first portion, the second memory circuit is in the second portion, the first active region comprises transistors that are larger than transistors in the second active region, and the first backend region comprises conductive traces that have a larger pitch than conductive traces in the second backend region.
Abstract:
A substrate protrusion is described. The substrate protrusion includes a top portion that extends in a first direction toward a gap between the first die and the second die and in a second direction parallel to the gap between the first die and the second die. The substrate protrusion also includes a base portion that is coupled to a substrate that extends underneath the first die and the second die. An encapsulant is over the protrusion of the substrate, the encapsulant extending beneath the first die, and the encapsulant extending beneath the second die.
Abstract:
A substrate protrusion is described. The substrate protrusion includes a top portion that extends in a first direction toward a gap between the first die and the second die and in a second direction parallel to the gap between the first die and the second die. The substrate protrusion also includes a base portion that is coupled to a substrate that extends underneath the first die and the second die. The substrate protrusion can enable void-free underfill.