Abstract:
Fan-out wafer-level packaging (WLP) using metal foil lamination is provided. An example wafer-level package incorporates a metal foil, such as copper (Cu), to relocate bonding pads in lieu of a conventional deposited or plated RDL. A polymer such as an epoxy layer adheres the metal foil to the package creating conductive contacts between the metal foil and metal pillars of a die. The metal foil may be patterned at different stages of a fabrication process. An example wafer-level package with metal foil provides relatively inexpensive electroplating-free traces that replace expensive RDL processes. Example techniques can reduce interfacial stress at fan-out areas to enhance package reliability, and enable smaller chips to be used. The metal foil provides improved fidelity of high frequency signals. The metal foil can be bonded to metallic pillar bumps before molding, resulting in less impact on the mold material.
Abstract:
A microelectronic assembly including first and second laminated microelectronic elements is provided. A patterned bonding layer is disposed on a face of each of the first and second laminated microelectronic elements. The patterned bonding layers are mechanically and electrically bonded to form the microelectronic assembly.
Abstract:
An apparatus relates generally to a microelectronic package. In such an apparatus, a microelectronic die has a first surface, a second surface opposite the first surface, and a sidewall surface between the first and second surfaces. A plurality of wire bond wires with proximal ends thereof are coupled to either the first surface or the second surface of the microelectronic die with distal ends of the plurality of wire bond wires extending away from either the first surface or the second surface, respectively, of the microelectronic die. A portion of the plurality of wire bond wires extends outside a perimeter of the microelectronic die into a fan-out (“FO”) region. A molding material covers the first surface, the sidewall surface, and portions of the plurality of the wire bond wires from the first surface of the microelectronic die to an outer surface of the molding material.
Abstract:
Multi-surface edge pads for vertical mount packages and methods of making package stacks are provided. Example substrates for vertical surface mount to a motherboard have multi-surface edge pads. The vertical mount substrates may be those of a laminate-based FlipNAND. The multi-surface edge pads have cutouts or recesses that expose more surfaces and more surface area of the substrate for bonding with the motherboard. The cutouts in the edge pads allow more solder to be used between the attachment surface of the substrate and the motherboard. The placement and geometry of the resulting solder joint is stronger and has less internal stress than conventional solder joints for vertical mounting. In an example process, blind holes can be drilled into a thickness of a substrate, and the blind holes plated with metal. The substrate can be cut in half though the plated holes to provide two substrates with plated multi-surface edge pads including the cutouts for mounting to the motherboard.
Abstract:
Die (110) and/or undiced wafers and/or multichip modules (MCMs) are attached on top of an interposer (120) or some other structure (e.g. another integrated circuit) and are covered by an encapsulant (160). Then the interposer is thinned from below. Before encapsulation, a layer (410) more rigid than the encapsulant is formed on the interposer around the die to reduce or eliminate interposer dishing between the die when the interposer is thinned by a mechanical process (e.g. CMP). Other features are also provided.
Abstract:
A microelectronic assembly includes a plurality of stacked microelectronic packages, each comprising a dielectric element having a major surface, an interconnect region adjacent an interconnect edge surface which extends away from the major surface, and plurality of package contacts at the interconnect region. A microelectronic element has a front surface with chip contacts thereon coupled to the package contacts, the front surface overlying and parallel to the major surface. The microelectronic packages are stacked with planes defined by the dielectric elements substantially parallel to one another, and the package contacts electrically coupled with panel contacts at a mounting surface of a circuit panel via an electrically conductive material, the planes defined by the dielectric elements being oriented at a substantial angle to the mounting surface.
Abstract:
An apparatus relates generally to a microelectronic package. In such an apparatus, a microelectronic die has a first surface, a second surface opposite the first surface, and a sidewall surface between the first and second surfaces. A plurality of wire bond wires with proximal ends thereof are coupled to either the first surface or the second surface of the microelectronic die with distal ends of the plurality of wire bond wires extending away from either the first surface or the second surface, respectively, of the microelectronic die. A portion of the plurality of wire bond wires extends outside a perimeter of the microelectronic die into a fan-out (“FO”) region. A molding material covers the first surface, the sidewall surface, and portions of the plurality of the wire bond wires from the first surface of the microelectronic die to an outer surface of the molding material.
Abstract:
Die (110) and/or undiced wafers and/or multichip modules (MCMs) are attached on top of an interposer (120) or some other structure (e.g. another integrated circuit) and are covered by an encapsulant (160). Then the interposer is thinned from below. Before encapsulation, a layer (410) more rigid than the encapsulant is formed on the interposer around the die to reduce or eliminate interposer dishing between the die when the interposer is thinned by a mechanical process (e.g. CMP). Other features are also provided.
Abstract:
A fan-out microelectronic package is provided in which bond wires electrically couple bond pads on a microelectronic element, e.g., a semiconductor chip which may have additional traces thereon, with contacts at a fan-out area of a dielectric element adjacent an edge surface of the chip. The bond wires mechanically decouple the microelectronic element from the fan-out area, which can make the electrical interconnections less prone to reliability issues due to effects of differential thermal expansion, such as caused by temperature excursions during initial package fabrication, bonding operations or thermal cycling. In addition, mechanical decoupling provided by the bond wires may also remedy other mechanical issues such as shock and possible delamination of package elements.