Abstract:
Apparatus and associated methods relate to an adaptable microenvironment for cellular and biological processing in a traceable, transportable unit. In an illustrative example, an apparatus consists of one or more portable cell tissue containment modules that may be removably interconnected to perform a processing step and/or transfer the stored medium to another module. Associated apparatus and methods are proposed to ensure non-contaminating mechanical or fluid communication between a plurality of modules or between a module and peripheral equipment, to limit process errors such as steps performed out of order, and to intrinsically manage identification of tissue samples with accompanying process data in a manner that decreases risk of mislabeling or otherwise mishandling a sample at all stages of the production and treatment process.
Abstract:
Apparatus and associated methods relate to nutating a piston drive linkage oriented around a longitudinal wobble axis in response to the rotation of a drive shaft about a drive axis, said wobble axis being offset and canted with respect to said drive axis. In an illustrative example, the piston drive linkage may be formed as a wobble plate extending radially from the wobble axis. Near a periphery, the wobble plate may attach to a plurality of stationary piston cranks. The nutating motion of the piston drive linkage may impart a substantially linear motion profile substantially parallel to the drive axis of rotation. A bearing oriented around the wobble axis may advantageously be freely inserted into and removed from an aperture in the wobble plate. An inner race of the bearing may freely rotate about the wobble axis in response to rotation about the drive axis.
Abstract:
Apparatus and associated methods relate to nutating a piston drive linkage oriented around a longitudinal axis in response to the rotation of a drive shaft about a drive axis, said longitudinal axis being offset and canted with respect to said drive axis. In an illustrative example, the piston drive linkage may be formed as a wobble plate extending radially from the longitudinal axis. Near a periphery, the wobble plate may attach to a plurality of stationary piston cranks. The nutating motion of the piston drive linkage may impart a substantially linear motion profile substantially parallel to the drive axis of rotation. A bearing oriented around the longitudinal axis may advantageously be freely inserted into and removed from an aperture in the wobble plate. An inner race of the bearing may freely rotate about the longitudinal axis in response to rotation about the drive axis.
Abstract:
Apparatus and methods relate to a pneumatic compression therapy device configured to suggest content to the patient based on a determined disease state, the content pertaining to suggested changes in lifestyle based on a standard of care. In an illustrative embodiment, the suggested changes may include modifications to treatment location, treatment time, diet, eating habits, or sleeping schedule. Various examples may further sample the patient's health and automatically adjust a treatment parameter within a predetermined parameter range based on a history of measured parameters, such as limb volume, for example. In coordination with the therapeutic treatment, the therapy device may deliver suggested content to guide the patient to make more healthful lifestyle choices to reduce recovery time and improve patient health outcomes.
Abstract:
Apparatus and associated methods relate to a wearable compression therapy system for ambulatory therapy, the system including a wearable garment having one or more inflatable chambers, and a pneumatic engine locally coupled to the garment to provide control and inflation of the one or more inflatable chambers. In an illustrative embodiment, the pneumatic engine may control a pump and one or more valves to inflate the inflatable chambers. The valves and pump may be coordinated according to a pre-programmed profile. In some embodiments, the pneumatic engine may have a wireless interface configured to receive control signals from a remote mobile device untethered from the garment. The pneumatic engine may send to the remote mobile device signals indicative of sensed conditions of the compression therapy system. In some embodiments, the pneumatic engine may include a power source that advantageously permits the user to be untethered from a source of power.
Abstract:
Apparatus and methods relate to a pneumatic compression therapy device configured to suggest content to the patient based on a determined disease state, the content pertaining to suggested changes in lifestyle based on a standard of care. In an illustrative embodiment, the suggested changes may include modifications to treatment location, treatment time, diet, eating habits, or sleeping schedule. Various examples may further sample the patient's health and automatically adjust a treatment parameter within a predetermined parameter range based on a history of measured parameters, such as limb volume, for example. In coordination with the therapeutic treatment, the therapy device may deliver suggested content to guide the patient to make more healthful lifestyle choices to reduce recovery time and improve patient health outcomes.
Abstract:
Apparatus and methods relate to a pneumatic compression therapy device configured to suggest content to the patient based on a determined disease state, the content pertaining to suggested changes in lifestyle based on a standard of care. In an illustrative embodiment, the suggested changes may include modifications to treatment location, treatment time, diet, eating habits, or sleeping schedule. Various examples may further sample the patient's health and automatically adjust a treatment parameter within a predetermined parameter range based on a history of measured parameters, such as limb volume, for example. In coordination with the therapeutic treatment, the therapy device may deliver suggested content to guide the patient to make more healthful lifestyle choices to reduce recovery time and improve patient health outcomes.
Abstract:
Apparatus and associated methods relate to a wearable compression therapy system for ambulatory therapy, the system including a wearable garment having one or more inflatable chambers, and a pneumatic engine locally coupled to the garment to provide control and inflation of the one or more inflatable chambers. In an illustrative embodiment, the pneumatic engine may control a pump and one or more valves to inflate the inflatable chambers. The valves and pump may be coordinated according to a pre-programmed profile. In some embodiments, the pneumatic engine may have a wireless interface configured to receive control signals from a remote mobile device untethered from the garment. The pneumatic engine may send to the remote mobile device signals indicative of sensed conditions of the compression therapy system. In some embodiments, the pneumatic engine may include a power source that advantageously permits the user to be untethered from a source of power.
Abstract:
Apparatus and associated methods relate to an optimizable cellular growth chamber, where growth conditions are optimized by adjusting gas pressures through a gas permeable membrane. In an illustrative example, an apparatus may provide a volume to contain growth medium and the cells under propagation, where the volume has limited but non-zero pneumatic communication with a pressure-controlled chamber via a gas-permeable membrane. Associated apparatus and methods are proposed to manage desired growth conditions via deliberate control of parameters, such as partial pressures, for example.
Abstract:
Apparatus and methods relate to a pneumatic compression therapy device configured to suggest content to the patient based on a determined disease state, the content pertaining to suggested changes in lifestyle based on a standard of care. In an illustrative embodiment, the suggested changes may include modifications to treatment location, treatment time, diet, eating habits, or sleeping schedule. Various examples may further sample the patient's health and automatically adjust a treatment parameter within a predetermined parameter range based on a history of measured parameters, such as limb volume, for example. In coordination with the therapeutic treatment, the therapy device may deliver suggested content to guide the patient to make more healthful lifestyle choices to reduce recovery time and improve patient health outcomes.