Abstract:
Method and devices are disclosed for device manufacture of gallium nitride devices by growing a gallium nitride layer on a silicon substrate using Atomic Layer Deposition (ALD) followed by rapid thermal annealing. Gallium nitride is grown directly on silicon or on a barrier layer of aluminum nitride grown on the silicon substrate. One or both layers are thermally processed by rapid thermal annealing. Preferably the ALD process use a reaction temperature below 550° C. and preferable below 350° C. The rapid thermal annealing step raises the temperature of the coating surface to a temperature ranging from 550 to 1500° C. for less than 12 msec.
Abstract:
A betavoltaic power source for transportation devices and applications is disclosed, wherein the device having a stacked configuration of isotope layers and energy conversion layers. The isotope layers have a half-life of between about 0.5 years and about 5 years and generate radiation with energy in the range from about 15 keV to about 200 keV. The betavoltaic power source is configured to provide sufficient power to operate the transportation device over its useful lifetime.
Abstract:
Methods of laser processing photoresist in a gaseous environment to improve at least one of etch resistance and line-edge roughness are disclosed. The methods include sequentially introducing first and second molecular gases to the photoresist surface and performing respective first and second laser scanning of the surface for each molecular gas. The first molecular gas can be trimethyl aluminum, titanium tetrachloride or diethyl zinc, and the second molecular gas comprises water vapor. Short dwell times prevent the photoresist from flowing while serving to speed up the photoresist enhancement process.
Abstract:
A betavoltaic power source for mobile devices and mobile applications includes a stacked configuration of isotope layers and energy conversion layers. The isotope layers have a half-life of between about 0.5 years and about 5 years and generate radiation with energy in the range from about 15 keV to about 200 keV. The betavoltaic power source is configured to provide sufficient power to operate the mobile device over its useful lifetime.
Abstract:
Laser annealing systems and methods for annealing a semiconductor wafer with ultra-short dwell times are disclosed. The laser annealing systems can include one or two laser beams that at least partially overlap. One of the laser beams is a pre-heat laser beam and the other laser beam is the annealing laser beam. The annealing laser beam scans sufficiently fast so that the dwell time is in the range from about 1 μs to about 100 μs. These ultra-short dwell times are useful for annealing product wafers formed from thin device wafers because they prevent the device side of the device wafer from being damaged by heating during the annealing process. Embodiments of single-laser-beam annealing systems and methods are also disclosed.
Abstract:
Methods of forming product wafers having semiconductor light-emitting devices to improve emission wavelength uniformity include either estimating or measuring a spatial variation in the emission wavelengths of the light-emitting devices of an already formed product wafer. The methods can also include defining a corrective temperature distribution for feeding back to the upstream process to reduce variations in the emission wavelength when forming new product wafers. The method can further includes applying the corrective temperature distribution when forming the new product wafers so that the new product wafers have a higher yield in forming the light-emitting devices than the already formed product wafer.
Abstract:
Method and devices are disclosed for device manufacture of gallium nitride devices by growing a gallium nitride layer on a silicon substrate using Atomic Layer Deposition (ALD) followed by rapid thermal annealing. Gallium nitride is grown directly on silicon or on a barrier layer of aluminum nitride grown on the silicon substrate. One or both layers are thermally processed by rapid thermal annealing. Preferably the ALD process use a reaction temperature below 550° C. and preferable below 350° C. The rapid thermal annealing step raises the temperature of the coating surface to a temperature ranging from 550 to 1500° C. for less than 12 msec.
Abstract:
Full-wafer inspection methods for a semiconductor wafer are disclosed. One method includes making a measurement of a select measurement parameter simultaneously over measurement sites of the entire surface of the semiconductor wafer at a maximum measurement-site pixel density ρmax to obtain measurement data, wherein the total number of measurement-site pixels obtained at the maximum measurement-site pixel density ρmax is between 104 and 108. The method also includes defining a plurality of zones of the surface of the semiconductor wafer, with each of the zones having a measurement-site pixel density ρ, with at least two of the zones having a different sized measurement-site pixel and thus a different measurement-site pixel density ρ. The method also includes processing the measurement data based on the plurality of zones and the corresponding measurement-site pixel densities ρ. The processed measurement data can be used for statistical process control of the process used to form devices on the semiconductor wafer.
Abstract:
High-efficiency line-forming optical systems and methods for defect annealing and dopant activation are disclosed. The system includes a CO2-based line-forming system configured to form at a wafer surface a first line image having between 2000 W and 3000 W of optical power. The line image is scanned over the wafer surface to locally raise the temperature up to a defect anneal temperature. The system can include a visible-wavelength diode-based line-forming system that forms a second line image that can scan with the first line image to locally raise the wafer surface temperature from the defect anneal temperature to a spike anneal temperature. Use of the visible wavelength for the spike annealing reduces adverse pattern effects and improves temperature uniformity and thus annealing uniformity.
Abstract:
Atomic Layer Deposition (ALD) is used for heteroepitaxial film growth at reaction temperatures ranging from 80-400° C. The substrate and film materials are preferably selected to take advantage of Domain Matched Epitaxy (DME). A laser annealing system is used to thermally anneal deposition layers after deposition by ALD. In preferred embodiments a silicon substrate is overlaid with an AIN nucleation layer and laser annealed. Thereafter a GaN device layers is applied over the AIN layer by an ALD process and then laser annealed. In a further example embodiment a transition layer is applied between the GaN device layer and the AIN nucleation layer. The transition layer comprises one or more different transition material layers each comprising a AlxGa1-x compound wherein the composition of the transition layer is continuously varied from AIN to GaN.