Abstract:
Validation verification data quantifying an intensity of light reaching a detector of a spectrometer from a light source of the spectrometer after the light passes through a validation gas across a known path length can be collected or received. The validation gas can include an amount of an analyte compound and an undisturbed background composition that is representative of a sample gas background composition of a sample gas to be analyzed using a spectrometer. The sample gas background composition can include one or more background components. The validation verification data can be compared with stored calibration data for the spectrometer to calculate a concentration adjustment factor, and sample measurement data collected with the spectrometer can be modified using this adjustment factor to compensate for collisional broadening of a spectral peak of the analyte compound by the background components. Related methods, articles of manufacture, systems, and the like are described.
Abstract:
A reference harmonic absorption curve of a laser absorption spectrometer, which can include a tunable or scannable laser light source and a detector, can have a reference curve shape and can include a first, second, or higher order harmonic signal of a reference signal generated by the detector in response to light passing from the laser light source through a reference gas or gas mixture. The reference gas or gas mixture can include one or more of a target analyte and a background gas expected to be present during analysis of the target analyte. The reference harmonic absorption curve can have been determined for the laser absorption spectrometer in a known or calibrated state. A test harmonic absorption curve having a test curve shape is compared with the reference harmonic absorption curve to detect a difference between the test curve shape and the reference curve shape. Operating and/or analytical parameters of the laser absorption spectrometer are adjusted to correct the test curve shape to reduce the difference between the test curve shape and the reference curve shape.
Abstract:
An energy content meter can spectroscopically quantify oxidation products after oxidation of a combustible mixture. The measured oxidation product concentrations or mole fractions can be converted to an energy content of the un-oxidized combustible mixture using a conversion factor that relates oxygen consumption during oxidation of the combustible mixture to the energy content of the combustible mixture.
Abstract:
Thermodynamic properties of a natural gas stream can be determined in real time utilizing modeling algorithms in conjunction with one or more sensors for quantifying physical and chemical properties of the natural gas. A first data signal produced by a first sensor can include intensity as a function of wavelength. At least one region in the wavelength range outside of a selected absorption transition can be fitted to a function to obtain a zero-absorption baseline, and a carbon dioxide concentration can be determined based on a line strength at the selected absorption transition corrected by the zero-absorption baseline. A total hydrocarbon concentration in the gas stream can be inferred based on a database of characteristic natural gas concentrations, and an algorithm can be implemented that determines an energy content of the gas stream. Related techniques, apparatus, systems, and articles are also described.
Abstract:
Moisture can be detected in a refrigerant background such as HFC (Hydrofluorocarbon) HFC-134A and HFC-152A and exampled by HFC-23, HFC-32, HFC-143A, HFC-125, HFC-245FA, HFC-227EA, and the like. The system can include a light source operating at any one of several wavelengths within the water absorption bands at wavelengths such as 1.4, 1.9 and 2.7 μm and a detector that measures the transmitted light intensity through the HFC samples. In one variation, the light source is a tunable diode laser and the moisture level is determined by direct absorption and harmonic spectroscopy. Related techniques, apparatus, systems, and articles are also described.
Abstract:
Concentrations of a target analyte in a gas mixture containing one or more background analytes having potentially interfering spectral absorption features can be calculated by compensating for background analyte absorption at a target wavelength used to quantify the target analyte. Absorption can be measured at a reference wavelength chosen to quantify the concentration of the background analyte. Using a background gas adjustment factor or function, the absorption measured at the reference wavelength can be used to calculate absorption due to the background analyte at the target wavelength and thereby compensate for this background absorption to more accurately calculate the target analyte concentration in real or near real time. Additional background analytes can optionally be compensated for by using one or more additional reference wavelengths.
Abstract:
Low concentrations of complex gas mixture components may be detected and quantified using a gas-chromatograph to separate a gas mixture prior to analysis of one or more eluting components using an absorption spectrometer. Substantial reductions in analytical system complexity and improvements in reliability are achieved compared with other commonly used methods for analyzing such complex mixtures.
Abstract:
A system and method can detect ethylene oxide in a sample of gas, such as air. The system includes a light source operating at a wavelength where molecules typically found within air absorb light at a substantially lower level than ethylene oxide molecules. Exemplary wavelengths are in the range of approximately 1.6–2.2 μm, and in particular at 1.6 μm, 1.645 μm, 1.692 μm, 2.195 μm, 2.2 μm, 2.216 μm, passes through the sample of gas to be detected by a detector. In one variation, the light source is a tunable diode laser or a VCSEL and the ethylene oxide level is determined using harmonic spectroscopy.
Abstract:
The present disclosure relates to a device for measuring a first analyte concentration and a second analyte concentration in a measuring medium, the device including: a sample cell; a first light source unit; a first detector unit; a functional element; a second light source unit; a second detector unit; and a control unit adapted to analyze a detected first light for determining a first value representing the concentration of the first analyte in the measuring medium and adapted to analyze a detected third light for determining a second value representing the concentration of the second analyte in the measuring medium. A method of using the device is also disclosed.
Abstract:
A laser spectrometer can be operated for analysis of one or more analytes present in a combustible gas mixture. The spectrometer can include one or more features that enable intrinsically safe operation. In other words, electrical, electronic, thermal, and/or optical energy sources can be limited within an hazardous are of the spectrometer where it is possible for an explosive gas mixture to exist. Methods, systems, articles and the like are described.