Abstract:
An electrical circuit comprising at least two negative capacitance insulators connected in series, one of the two negative capacitance insulators is biased to generate a negative capacitance. One of the negative capacitance insulators may include an air-gap which is part of a nanoelectromechnical system (NEMS) device and the second negative capacitance insulator includes a ferroelectric material. Both of the negative capacitance insulators may be located between the channel and gate of a field effect transistor. The NEMS device may include a movable electrode, a dielectric and a fixed electrode and arranged so that the movable electrode is attached to at least two points and spaced apart from the dielectric and fixed electrode, and the ferroelectric capacitor is electrically connected to either of the electrodes.
Abstract:
Normally closed (shut) micro-electro-mechanical switches (MEMS), methods of manufacture and design structures are provided. A structure includes a beam structure that includes a first end hinged on a first electrode and in electrical contact with a second electrode, in its natural state when not actuated.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes forming a beam structure and an electrode on an insulator layer, remote from the beam structure. The method further includes forming at least one sacrificial layer over the beam structure, and remote from the electrode. The method further includes forming a lid structure over the at least one sacrificial layer and the electrode. The method further includes providing simultaneously a vent hole through the lid structure to expose the sacrificial layer and to form a partial via over the electrode. The method further includes venting the sacrificial layer to form a cavity. The method further includes sealing the vent hole with material. The method further includes forming a final via in the lid structure to the electrode, through the partial via.
Abstract:
A process of forming a through-silicon via (TSV) in a die includes forming a movable member in the TSV that can be actuated or that can be a sensor. Action of the movable member in the TSV can result in a logic word being sent from the TSV die to a subsequent die. The TSV die may be embedded in a substrate. The TSV die may also be coupled to a subsequent die.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) cavity includes forming a first sacrificial cavity layer over a wiring layer and substrate. The method further includes forming an insulator layer over the first sacrificial cavity layer. The method further includes performing a reverse damascene etchback process on the insulator layer. The method further includes planarizing the insulator layer and the first sacrificial cavity layer. The method further includes venting or stripping of the first sacrificial cavity layer to a planar surface for a first cavity of the MEMS.
Abstract:
A capacitive switch includes: a first conductive cantilever, a second conductive cantilever, a substrate, a coplanar waveguide arranged on the substrate, the coplanar waveguide includes a first conductor configured to transmit an electrical signal, a second conductor and a third conductor are arranged as ground wires on two sides of the first conductor; an insulation medium layer is arranged on the first conductor, a conducting layer is arranged on the insulation medium layer; the first conductive cantilever is connected to the second conductor by using a first fixed end, the second conductive cantilever is connected to the third conductor by using a second fixed end; when a direct-current signal is transmitted on the capacitive switch, a first free end of the first conductive cantilever and a second free end of the second conductive cantilever contact the conducting layer.
Abstract:
A method of forming a micro-electrical-mechanical structure (MEMS), includes forming a plurality of electrodes on a substrate, forming a beam structure in electrical contact with a first of the electrodes, and bending the beam structure with a thermal process. The method further includes forming a cantilevered electrode extending over an end of the bent beam structure, and returning the beam structure to its original position, which will contact the cantilevered electrode in a normally closed position.
Abstract:
An electronic device includes a substrate, a stationary electrode provided above the substrate, a movable electrode that is provided to face the stationary electrode, a wall portion that is provided on the substrate and surrounds the movable electrode and the stationary electrode, a film member that is fixed to the wall portion and seals space including the movable electrode and the stationary electrode, and a support portion that is provided, on an inner side of the wall portion on the substrate, in addition to the movable electrode and the stationary electrode to support the film member from within the space.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes layering metal and insulator materials on a sacrificial material formed on a substrate. The method further includes masking the layered metal and insulator materials. The method further includes forming an opening in the masking which overlaps with the sacrificial material. The method further includes etching the layered metal and insulator materials in a single etching process to form the beam structure, such that edges of the layered metal and insulator material are aligned. The method further includes forming a cavity about the beam structure through a venting.
Abstract:
A MEMS structure and methods of manufacture. The method includes forming a sacrificial metal layer at a same level as a wiring layer, in a first dielectric material. The method further includes forming a metal switch at a same level as another wiring layer, in a second dielectric material. The method further includes providing at least one vent to expose the sacrificial metal layer. The method further includes removing the sacrificial metal layer to form a planar cavity, suspending the metal switch. The method further includes capping the at least one vent to hermetically seal the planar cavity.