MEMS devices on a nanometer scale
    17.
    发明申请
    MEMS devices on a nanometer scale 失效
    MEMS器件纳米级

    公开(公告)号:US20030173647A1

    公开(公告)日:2003-09-18

    申请号:US10216654

    申请日:2002-08-12

    Abstract: An array of nanometric dimensions consisting of two or more arms, positioned side by side, wherein the arms are of such nanometric dimensions that the beams can be moved or deformed towards or away from one another by means of a low voltage applied between the beams, whereby to produce a desired optical, electronic or mechanical effect. At nanometer scale dimensions structures previously treated as rigid become flexible, and this flexibility can be engineered since it is a direct consequence of material and dimensions. Since the electrostatic force between the two arms is inversely proportional to the square of the distance, a very considerable force will be developed with a low voltage of the order of 1-5 volts, which is sufficient to deflect the elements towards or away from one another. As preferred, the bulk of the element may be comprises an insulating material, and an upper conductive layer is applied on the upper surface, where the element is formed by a nanolithography method such as nanoimprint lithography (NIL). Alternatively the elements may be formed completely of conductive material, where the elements are formed by a CMOS metalization process.

    Abstract translation: 由两个或更多个臂并排定位的纳米尺寸阵列,其中臂具有这样的纳米尺寸,使得梁可以通过施加在梁之间的低电压而朝向或远离彼此移动或变形, 从而产生期望的光学,电子或机械效应。 在纳米尺度上,先前被刚性处理的结构变得柔性,并且可以设计出这种灵活性,因为它是材料和尺寸的直接后果。 由于两个臂之间的静电力与距离的平方成反比,所以将以1-5伏特的低电压产生非常大的力,这足以将元件偏向或远离一个 另一个。 优选地,元件的主体可以包括绝缘材料,并且上导电层被施加在上表面上,其中元件通过纳米压印光刻(NIL)的纳米光刻方法形成。 或者,元件可以完全由导电材料形成,其中元件由CMOS金属化工艺形成。

Patent Agency Ranking