Abstract:
Compositions, methods of use thereof, and methods of decomposition thereof, are provided. One exemplary composition, among others, includes a polymer and a catalytic amount of a negative tone photoinitiator.
Abstract:
Embodiments of the present disclosure provide systems and methods for producing micro electro-mechanical device packages. Briefly described, in architecture, one embodiment of the system, among others, includes a micro electro-mechanical device formed on a substrate layer; and a thermally decomposable sacrificial structure protecting at least a portion of the micro electro-mechanical device, where the sacrificial structure is formed on the substrate layer and surrounds a gas cavity enclosing an active surface of the micro electro-mechanical device. Other systems and methods are also provided.
Abstract:
Polymers, methods of use thereof, and methods of decomposition thereof, are provided. One exemplary polymer, among others, includes, a photodefinable polymer having a sacrificial polymer and a photoinitiator.
Abstract:
MEMS devices (such as interferometric modulators) may be fabricated using a sacrificial layer that contains a heat vaporizable polymer to form a gap between a moveable layer and a substrate. One embodiment provides a method of making a MEMS device that includes depositing a polymer layer over a substrate, forming an electrically conductive layer over the polymer layer, and vaporizing at least a portion of the polymer layer to form a cavity between the substrate and the electrically conductive layer. Another embodiment provides a method for making an interferometric modulator that includes providing a substrate, depositing a first electrically conductive material over at least a portion of the substrate, depositing a sacrificial material over at least a portion of the first electrically conductive material, depositing an insulator over the substrate and adjacent to the sacrificial material to form a support structure, and depositing a second electrically conductive material over at least a portion of the sacrificial material, the sacrificial material being removable by heat-vaporization to thereby form a cavity between the first electrically conductive layer and the second electrically conductive layer.
Abstract:
A novel method suitable for commercially mass production of hollow microneedle with high quality for delivery of drugs across or into biological tissue is provided. It typically includes the following processes: (1) coating an elongated template of a first material with a second material to form a cover; (2) removing tips of the template and cover to form an opening in the cover; and (3) removing the template of the first material to obtain hollow microneedles of the second material. This simple, efficient and cost-effective fabrication method can mass produce hollow microneedle arrays involving no complicated and expensive equipments or techniques, which can be used in commercial fabrication of hollow needles for delivering drugs or genes across or into skin or other tissue barriers with advantages of minimal damage, painless, long-term and continuous usages.
Abstract:
The present invention provides fabrication methods using sacrificial materials comprising polymers. In some embodiments, the polymer may be treated to alter its solubility with respect to at least one solvent (e.g., aqueous solution) used in the fabrication process. The preparation of the sacrificial materials is rapid and simple, and dissolution of the sacrificial material can be carried out in mild environments. Sacrificial materials of the present invention may be useful for surface micromachining, bulk micromachining, and other microfabrication processes in which a sacrificial layer is employed for producing a selected and corresponding physical structure.
Abstract:
Provided is a method of fabricating a microstructure, and more specifically, a method of fabricating a structure of a Micro Electro Mechanical System (MEMS), which includes the step of applying and patterning a material for the sacrificial layer on a silicon substrate, and forming a post with the same material as the sacrificial layer material, so that a stiction problem can be prevented in advance at the time of fabricating the microstructure, only one process needs to be added to simplify fabrication of a post, and the sacrificial layer can be formed in a desired shape because a photoresist is used as the sacrificial layer material.
Abstract:
A system that generates an intense hot gas stream is described to etch a polymer on a substrate used in the manufacture of semiconductor and MEMS devices with no surface damage. The etching process is particularly useful to remove a polymer from relatively high aspect Height-to-Width and Width-to-Height ratio holes that can include trenches, having relatively large aspect ratios for removal of polymers used in connection with the manufacturing of microstructures.
Abstract:
Polymers, methods of use thereof, and methods of decomposition thereof, are provided. One exemplary polymer, among others, includes, a photodefinable polymer having a sacrificial polymer and a photoinitiator.
Abstract:
Systems and methods for three dimensional lithography, nano-indentation, and combinations thereof are disclosed. One exemplary three dimensional lithography method, among others, includes: providing a substrate having at least one optical element, wherein the optical element is selected from a refractive element and a diffractive element; disposing a polymer layer on the substrate and the at least one optical element, wherein the polymer layer includes a polymer material selected from a positive-tone polymer material and a negative-tone polymer material; positioning a mask adjacent the polymer layer, wherein the mask does not cover at least one directly exposed portion of the polymer material directly overlaying the at least one element; and exposing the at least one directly exposed portion of the polymer material to optical energy, wherein the optical energy passes through the at least one directly exposed portion of the polymer material and interacts with the element, and the element redirects the optical energy through the polymer material forming at least one area of indirectly exposed polymer material.