Abstract:
An anodic oxide film structure cutting method is provided. The method includes: an etching step of forming an etched groove by etching one surface of an anodic oxide film having a plurality of anodizing pores along a predetermined cutting line and forming increased-diameter pores by enlarging entrances of the anodizing pores positioned on an inner bottom surface of the etched groove; and a cutting step of cutting the anodic oxide film along the etched groove. Also provided is a unit anodic oxide film structure produced by the cutting method.
Abstract:
An anodic oxide film structure cutting method is provided. The method includes: an etching step of forming an etched groove by etching one surface of an anodic oxide film having a plurality of anodizing pores along a predetermined cutting line and forming increased-diameter pores by enlarging entrances of the anodizing pores positioned on an inner bottom surface of the etched groove; and a cutting step of cutting the anodic oxide film along the etched groove. Also provided is a unit anodic oxide film structure produced by the cutting method.
Abstract:
A method of forming a nano-structure involves forming a multi-layered structure including an oxidizable material layer established on a substrate, and another oxidizable material layer established on the oxidizable material layer. The oxidizable material layer is an oxidizable material having an expansion coefficient, during oxidation, that is more than 1. Anodizing the other oxidizable material layer forms a porous anodic structure, and anodizing the oxidizable material layer forms a dense oxidized layer and nano-pillars which grow through the porous anodic structure into pores thereof. The porous structure is selectively removed to expose the nano-pillars. A surface (I) between the dense oxidized layer and a remaining portion of the oxidizable material layer is anodized to consume a substantially cone-shaped portion of the nano-pillars to form cylindrical nano-pillars.
Abstract:
A manufacturing method for a porous microneedle array includes: forming a plurality of porous microneedle arrays, each having at least one microneedle and a porous carrier zone lying beneath it on the face of a semiconductor substrate; forming an interlayer between a non-porous residual layer of the semiconductor substrate located on the back side of the semiconductor substrate and the carrier zone, which has greater porosity than the carrier zone; detaching the residual layer from the carrier zone by breaking up the interlayer; and separating the microneedle arrays into corresponding chips.
Abstract:
A method of forming a nano-structure (100′) involves forming a multi-layered structure (10) including an oxidizable material layer (14) established on a substrate (12), and another oxidizable material layer (16) established on the oxidizable material layer (14). The oxidizable material layer (14) is an oxidizable material having an expansion coefficient, during oxidation, that is more than 1. Anodizing the other oxidizable material layer (16) forms a porous anodic structure (16′), and anodizing the oxidizable material layer (14) forms a dense oxidized layer (14′) and nano-pillars (20) which grow through the porous anodic structure (16′) into pores (18) thereof. The porous structure (16′) is selectively removed to expose the nano-pillars (20). A surface (I) between the dense oxidized layer (14′) and a remaining portion of the oxidizable material layer (14) is anodized to consume a substantially cone-shaped portion (32) of the nano-pillars (20) to form cylindrical nano-pillars (20′).
Abstract:
A manufacturing method for a porous microneedle array includes: forming a plurality of porous microneedle arrays, each having at least one microneedle and a porous carrier zone lying beneath it on the face of a semiconductor substrate; forming an interlayer between a non-porous residual layer of the semiconductor substrate located on the back side of the semiconductor substrate and the carrier zone, which has greater porosity than the carrier zone; detaching the residual layer from the carrier zone by breaking up the interlayer; and separating the microneedle arrays into corresponding chips.
Abstract:
A simple and cost-effective possibility is proposed for producing optically transparent regions (5, 6) in a silicon substrate (1), by the use of which both optically transparent regions of any thickness and optically transparent regions over a cavity in a silicon substrate are able to be implemented.For this purpose, first at least a specified region (5, 6) of the silicon substrate (1) is etched porous. Thereafter, the specified porous region (5, 6) of the silicon substrate (1) is oxidized.
Abstract:
After an Si wafer is anisotropically etched through an etching mask having an opening in an anisotropically etching solution, an etching face of the Si wafer emerged by the anisotropic etching is subjected to anodic oxidation by applying a positive voltage for anodic oxidation on the Si wafer. As a result, the etching face of the Si wafer is isotropically etched due to the anodic oxidation in the anisotropic etching solution. By the isotropic etching thus performed, a sharp corner formed at an end portion of a recess portion formed in the Si wafer by the anisotropic etching, is rounded. Because the isotropic etching reaction progresses very slowly in comparison with the anisotropic etching, control of the etching can be made easy and accurately. As a result, the thickness of the diaphragm can be prevented from being dispersed.
Abstract:
A method for manufacturing a minute silicon mechanical device, which includes the steps of forming a diffusion region by doping a predetermined portion of a silicon substrate with an impurity of high density; forming an epitaxial layer over the silicon substrate including the diffusion region and forming an oxide layer over the epitaxial layer; forming an ohmic contact layer at the lower surface of the silicon substrate; patterning the oxide layer to have a striped configuration at that portion of the oxide layer corresponding to the predetermined portion of the diffusion region, thus exposing a predetermined portion of the epitaxial layer; forming a plurality of beams having a striped configuration by etching the exposed portion of the epitaxial layer, using the oxide layer as a mask and then removing the oxide layer; and removing the diffusion region below the plurality of beams.
Abstract:
Nanofluidic passages such as nanochannels and nanopores are closed or opened in a controlled manner through the use of a feedback system. An oxide layer is grown or removed within a passage in the presence of an electrolyte until the passage reaches selected dimensions or is closed. The change in dimensions of the nanofluidic passage is measured during fabrication. The ionic current level through the passage can be used to determine passage dimensions. Fluid flow through an array of fluidic elements can be controlled by selective oxidation of fluidic passages between elements.