Abstract:
Disclosed is a synthetic silica glass optical material having high resistance to optical damage by ultraviolet radiation in the ultraviolet wavelength range, particularly in the wavelength less than about 250 nm and particularly, exhibiting a low laser induced wavefront distortion; specifically a laser induced wavefront distortion, measured at 633 nm, of between about −1.0 and 1.0 nm/cm when subjected to 10 billion pulses of a laser operating at approximately 193 nm and at a fluence of approximately 70 μJ/cm2. The synthetic silica glass optical material of the present invention comprises OH concentration levels of less than about 600 ppm, preferably less than 200 ppm, and H2 concentration levels less than about 5.0×1017 molecules/cm3′ and preferably less than about 2.0×1017 molecules/cm3.
Abstract translation:公开了一种合成石英玻璃光学材料,其特征在于波长小于约250nm,特别是具有低激光诱导波前失真的紫外线波长范围内具有高抗紫外线辐射的光学损伤, 具体地,在经受约193nm处的激光器操作的100亿脉冲和大约70μJ/ cm 2的能量密度下,在633nm处测量的激光感应波前失真在约-1.0和1.0nm / cm之间。 本发明的合成石英玻璃光学材料包含小于约600ppm,优选小于200ppm的OH浓度水平和小于约5.0×10 17分子/ cm 3',优选小于约2.0×10 17分子/ cm 3的H 2浓度水平 。
Abstract:
Disclosed are high purity synthetic silica glass material having a high OH concentration homogeneity in a plane perpendicular to the optical axis, and process of making the same. The glass has high refractive index homogeneity. The glass can have high internal transmission of at least 99.65%/cm at 193 nm. The process does not require a post-sintering homogenization step. The controlling factors for high compositional homogeneity, thus high refractive index homogeneity, include high initial local soot density uniformity in the soot preform and slow sintering, notably isothermal treatment during consolidation.
Abstract:
The present invention provides a synthetic quartz glass having a diameter of 100 mm or more for using in an optical apparatus comprising a light source emitting a light having a wavelength of 250 nm or less, the synthetic quartz glass having, in a region located inward from the periphery thereof by 10 mm or more in a plane perpendicular to the optical axis of the synthetic quartz glass: a birefringence of 0.5 nm or less per thickness of 1 cm with respect to a light having a wavelength of 193 nm; an OH group concentration of 60 ppm or less; an averaged differential OH group concentration from the center of the synthetic quartz glass toward a peripheral direction thereof, normalized with respect to the radius of the synthetic quartz glass, of not less than −60 ppm and less than −8 ppm; and an unbiased standard deviation σ of a differential OH group concentration from the center of the synthetic quartz glass toward a peripheral direction thereof, normalized with respect to the radius of the synthetic quartz glass, of 10 ppm or less, the unbiased standard deviation σ being determined with the following formula (1): σ = ∑ i = 1 n ( X i - X _ ) 2 n - 1 providing ; X i = Δ n _ OHi Δ r i * = n _ OHi - n _ OHi + 1 r i * - r i + 1 * : ( 1 ) differential OH group concentration at measurement point i normalized with respect to the radius R of the synthetic quartz glass; n _ OHi = n OHi - 1 + n OHi + n OHi + 1 3 : OH group concentration at measurement point i in terms of moving average for three points including the two points before and after the measurement point i; r i * = r i R : radius at measurement point i normarized with respect to the radius R of the synthetic quartz glass; X: average of OH group concentrations Xi in the whole evaluation region; and n: number of measurement points in the evaluation region (integer of 2 or more).
Abstract:
The invention relates to a method for the economic production of a blank for a component made from laser-active quartz glass in any form or dimension. The method comprises the following method steps: a) preparation of a dispersion with a solids content of at least 40 wt. %, comprising SiO2 nanopowder and doping agents, including a cation of the rare earth metals and transition metals in a fluid, b) granulation by agitation of the dispersion, with removal of moisture to form a doped SiO2 granulate of spherical porous granular particles with a moisture content of less than 35 wt. % and a density of at least 0.95 g/cm3, c) drying and purification of the SiO2 granulate, by heating to a temperature of at least 1000° C. to form doped porous SiO2 grains with an OH content of less than 10 ppm and d) sintering or fusing the doped SiO2 grains in a reducing atmosphere to give the blank made from doped quartz glass.
Abstract:
What is disclosed includes OD-doped synthetic silica glass capable of being used in optical elements for use in lithography below about 300 nm. OD-doped synthetic silica glass was found to have significantly lower polarization-induced birefringence value than non-OD-doped silica glass with comparable concentration of OH. Also disclosed are processes for making OD-doped synthetic silica glasses, optical member comprising such glasses, and lithographic systems comprising such optical member. The glass is particularly suitable for immersion lithographic systems due to the exceptionally low polarization-induced birefringence values at about 193 nm.
Abstract:
A synthetic quartz glass for optical use, to be used by irradiation with light within a range of from the ultraviolet region to the vacuum ultraviolet region, which contains fluorine, which has a ratio of the scattering peak intensity of 2250 cm−1 (I2250) to the scattering peak intensity of 800 cm−1 (I800), i.e. I2250/I800, of at most 1×10−4 in the laser Raman spectrum, and which has an absorption coefficient of light of 245 nm of at most 2×10−3 cm−1.
Abstract:
Lithographic methods are disclosed. In one such method, a pulsed ultraviolet radiation source for producing ultraviolet lithography radiation having a wavelength shorter than about 300 nm at a fluence of less than 10 mJ/cm2/pulse and a high purity fused silica lithography glass having a concentration of molecular hydrogen of between about 0.02×1018 molecules/cm3 and about 0.18×1018 molecules/cm3 are provided. A lithography pattern is formed with the ultraviolet lithography radiation; the lithography pattern is reduced to produce a reduced lithography pattern; and the reduced lithography pattern is projected onto a ultraviolet radiation sensitive lithography medium to form a printed lithography pattern. At least one of the forming, reducing, and projecting steps includes transmitting the ultraviolet lithography radiation through the high purity fused silica lithography glass. Lithography systems and high purity fused silica lithography glass are also described.
Abstract translation:公开了平版印刷方法。 在一种这样的方法中,用于产生具有小于约300nm的波长的紫外光刻辐射的脉冲紫外辐射源,其注量小于10mJ / cm 2 /脉冲和高纯度熔融石英光刻 分子氢浓度在约0.02×10 18分子/ cm 3至约0.18×10 18分子/ cm 3之间的玻璃 SUP>。 用紫外光刻法形成光刻图案; 光刻图案被减少以产生减小的光刻图案; 并且将还原的光刻图案投影到紫外线照射敏感光刻介质上以形成印刷光刻图案。 形成,还原和突出步骤中的至少一个步骤包括通过高纯度熔融石英光刻玻璃传输紫外光刻辐射。 还描述了平版印刷系统和高纯度熔融石英光刻玻璃。
Abstract:
A method produces a glass body that contains a reduced amount of OH groups in the metallic-oxide-containing glass layer and that has a reduced amount of transmission loss due to OH groups when the glass body is transformed into an optical fiber. The production method produces an optical glass body. An optical fiber contains the optical glass body in at least one part of its region for guiding a lightwave. The production method includes the following steps: (a) introducing into a glass pipe a gas containing an organometallic compound and a glass-forming material; (b) decomposing the organometallic compound into an organic constituent and a metallic constituent; (c) heating and oxidizing the metallic constituent so that produced glass particles containing a metallic oxide are deposited on the inner surface of the glass pipe to form a glass-particle-deposited layer; and (d) consolidating the deposited layer to form a metallic-oxide-containing glass layer.
Abstract:
The invention relates to a method for producing a blank mold from synthetic quartz glass by using a plasma-assisted deposition method, according to which a hydrogen-free media flow containing a glass starting material and a carrier gas is fed to a multi-nozzle deposition burner. The glass starting material is introduced into a plasma zone by the deposition burner and is oxidized therein while forming SiO2 particles, and the SiO2 particles are deposited on a deposition surface while being directly vitrified. In order to increase the deposition efficiency, the invention provides that the deposition burner (1) focuses the media flow toward the plasma zone (4) by. A multi-nozzle plasma burner, which is suited for carrying out the method and which is provided with a media nozzle for feeding a media flow to the plasma zone, is characterized in that the media nozzle (7) is designed so that it is focussed toward the plasma zone (4). The focussing is effected by a tapering (6) of the media nozzle (7).
Abstract:
A method of forming an alkali metal oxide-doped optical fiber by diffusing an alkali metal into a surface of a glass article is disclosed. The silica glass article may be in the form of a tube or a rod, or a collection of tubes or rods. The silica glass article containing the alkali metal, and impurities that may have been unintentionally diffused into the glass article, is etched to a depth sufficient to remove the impurities. The silica glass article may be further processed to form a complete optical fiber preform. The preform, when drawn into an optical fiber, exhibits a low attenuation.