Abstract:
A fused silica glass and a fused silica article having a combined concentration of at least one of OH and OD of up to about 50 ppm. The fused silica glass is formed by drying a fused silica soot blank or preform in an inert atmosphere containing a drying agent, followed by removal of residual drying agent from the dried soot blank by heating the dried soot blank in an atmosphere comprising an inert gas and of oxygen.
Abstract:
This disclosure is directed to tailoring and improving the expansivity of low thermal expansion silica-titania glass through changes in the [OH] content and fictive temperature of the glasses. The [OH] concentration in the glass can be in the range of 600-2500 ppm. The fictive temperature, TF is less than 900° C.
Abstract:
A method for manufacturing quartz glass using a main burner having a multi-tube assembly having a center tube, a first enclosure tube surrounding the center tube, a second enclosure tube surrounding the first enclosure tube, a tubular shell surrounding the multi-tube assembly, and a plurality of nozzles disposed within the tubular shell, a double-tube assembly surrounding at least a forward opening of the main burner includes feeding silica-forming compound to the center tube, a combustion-supporting gas to the first enclosure tube and the nozzles, a combustible gas to the second enclosure tube and the tubular shell, and a combustion-supporting gas to the double-tube assembly, forming oxyhydrogen flame for hydrolyzing or decomposing the silica-forming compound to form silica, depositing the silica on the target, and melting and vitrifying the deposited silica into quartz glass.
Abstract:
The invention provides a process for producing a synthetic quartz glass, comprising: (a) depositing fine quartz glass particles synthesized by flame hydrolysis of a glass-forming material, on a substrate, to form a porous quartz glass base; (b) presintering the porous quartz glass base; (c) heat-treating the presintered porous quartz glass base by holding it under vacuum at a temperature in the range of from 1,100° C. to below the vitrification temperature for a certain time period; and (d) heating the thus heat-treated porous quartz glass base to a temperature not lower than the vitrification temperature to obtain a synthetic quartz glass. According to the process for synthetic quartz glass production of the invention, a synthetic quartz glass having a reduced OH group amount and a uniform OH group concentration can be obtained. From the synthetic quartz glass, an optical member having excellent optical properties can be obtained.
Abstract:
A method of making a silica glass having a uniform fictive temperature. The glass article is heated at a target fictive temperature, or heated or cooled at a rate that is less than the rate of change of the fictive temperature, for a time that is sufficient to allow the fictive temperature of the glass to come within 3° C. of the target fictive temperature. The silica glass is then cooled from the target fictive temperature to a temperature below the strain point of the glass at a cooling rate that is greater than the relaxation rate of the glass at the target fictive temperature. The silica glass has a fictive temperature that varies by less than 3° C. after the annealing step. A silica glass made by the method is also described.
Abstract:
In the nanoimprint lithography, titania-doped quartz glass having an internal transmittance distribution of up to 10% at wavelength 365 nm is suited for use as nanoimprint molds.
Abstract:
Disclosed are synthetic silica glass having a low polarization-induced birefringence, process for making the glass and lithography system comprising optical element made of the glass. The silica glass has a polarization-induced birefringence measured at 633 nm of less than about 0.1 nm/cm when subjected to excimer laser pulses at about 193 nm having a fluence of about 40 μJ·cm−2·pulse−1 and a pulse length of about 25 ns for 5×109 pulses.
Abstract translation:公开了具有低偏振诱发双折射的合成石英玻璃,用于制造玻璃的方法和包含由玻璃制成的光学元件的光刻系统。 当在大约193nm处的准分子激光脉冲具有约40μJ·cm-2·pulse-1的注量和脉冲长度时,石英玻璃具有在633nm处测量的偏振诱发双折射小于约0.1nm / cm 对于5×109脉冲,约25ns。
Abstract:
The present invention provides a TiO2—SiO2 glass whose coefficient of linear thermal expansion in the range of the time of irradiation with EUV light is substantially zero when used as an optical member of an exposure tool for EUVL and which has extremely high surface smoothness. The present invention relates to a TiO2-containing silica glass having a TiO2 content of from 7.5 to 12% by mass, a temperature at which a coefficient of linear thermal expansion is 0 ppb/° C., falling within the range of from 40 to 110° C., and a standard deviation (σ) of a stress level of striae of 0.03 MPa or lower within an area of 30 mm×30 mm in at least one plane.
Abstract:
The present invention is to provide a TiO2—SiO2 glass whose coefficient of linear thermal expansion at the time of irradiating with high EUV energy light becomes substantially zero when used as an optical member of an exposure tool for EUVL. The present invention relates to a TiO2-containing silica glass, having a fictive temperature of 1,000° C. or lower, a OH concentration of 600 ppm or higher, a temperature at which the coefficient of linear thermal expansion becomes 0 ppb/° C. of from 40 to 110° C., and an average coefficient of linear thermal expansion in the temperature range of 20 to 100° C., of 50 ppb/° C. or lower.
Abstract:
An optical fiber includes: a core (1) having an outer diameter (D1) of greater than or equal to 8.2 μm and less than or equal to 10.2 μm; a first cladding (2) surrounding the core (1) and having an outer diameter (D2) of greater than or equal to 30 μm and less than or equal to 45 μm; a second cladding (3) surrounding the first cladding (2) and having a thickness (T) of greater than or equal to 7.4 μm; and a support layer (4) surrounding the second cladding (3). The relative refractive index difference which is the ratio of the difference between the refractive index of the support layer (4) and that of the second cladding (3) to the refractive index of the support layer (4) is greater than or equal to 0.5%.