Abstract:
The present invention relates to microspheres (i.e., beads) that comprise titania and bismuth oxide. The glass microspheres further comprise zirconia. The invention also relates to retroreflective articles, and in particular pavement markings, comprising such microspheres.
Abstract:
In one aspect, the invention features a fiber waveguide having a waveguide axis, including a first portion extending along the waveguide axis, and a second portion different from the first portion extending along the waveguide axis surrounding the first portion, wherein at least one of the first and second portions comprises a chalcogenide glass selected from the group consisting of Selenium chalcogenide glasses and Tellurium chalcogenide glasses, both the first and second portions have a viscosity greater than 103 Poise at some temperature, T, and the fiber waveguide is a photonic crystal fiber.
Abstract:
The invention is directed to ultra-low expansion glasses to which adjustments have been made to selected variables in order to improve the properties of the glasses, and particularly to lower the expansivity of the glasses. The glasses are titania-doped silica glasses. The variables being adjusted include an adjustment in β-OH level; an adjustment to the cooling rate of the molten glass material through the setting point; and the addition of selected dopants to impact the CTE behavior.
Abstract:
A borosilicate glass composition comprises SiO2 having a concentration of about 40 mole percent to about 60 mole percent, B2O3 having a concentration of about 10 mole percent to about 30 mole percent, and an alkaline earth and/or alkali compound having a concentration of 10 mole percent to about 40 mole percent. An optical fiber amplification device comprises a borosilicate glass material cladding. The core comprises a germanate glass material doped with Tm3+. The germanate glass material has a first surface configured to receive an optical signal having a wavelength of from about 1400 nm to about 1540 nm and a second surface configured to output an amplified optical signal. In this manner, low cost fiber amplifiers in the 1450-1530 nm wavelength region (corresponding to the S-band) can be achieved.
Abstract:
An optical amplifying fiber including a clad, a first core provided inside the clad and containing Ge, a second core provided inside the first core and containing Er and Al, and a third core provided inside the second core and containing Ge. The second core has a refractive index higher than that of the clad, and the first and third cores have refractive indexes each of which is higher than that of the second core. Since the third core having the high refractive index is provided at a central portion, it is possible to make smaller a mode field diameter and hence to improve a conversion efficiency of pumping light into signal light. Further, since the second core contains Al as an amplification band width increasing element, it is possible to sufficiently ensure a wide amplification band width.
Abstract:
A method that provides a new way to embed rare earth fluorides into silicate (or germania-doped silica) glasses by means of solution chemistry. Embedding rare earth fluorides into a silicate (or germania-doped silica) glass comprises the following steps. First, form a porous silicate core preform. Second, submerge the preform into an aqueous solution of rare earth ions. Third, remove the preform from the solution and wash the outside surfaces of the preform. Fourth, submerge the preform into an aqueous solution of a fluorinating agent to precipitate rare earth trifluorides from the solution and deposit in the pores or on the wall of the preform. This is followed by drying.
Abstract:
A sol-gel method of preparing a powder for use in forming a glass is provided, along with methods of preparing glasses and glass fibers from the powder. The inventive method allows for the incorporation of a wide range of elements and compositions into a homogeneous glass or glass fiber that is substantially free of hydroxide groups. In addition, dopants incorporated into glasses prepared by the inventive method are uniformly distributed throughout the glass structure.
Abstract:
This invention is directed to the production of essentially defect-free high purity fused silica glass articles, the method comprising the following steps: (a) forming a green body from silica particulates or a porous body of amorphous silica; (b) sintering said body in a chamber by raising the temperature of the chamber to above 1720.degree. C., while purging the chamber with helium or applying a vacuum to the chamber; and (c) consolidating the sintered body in a chamber by raising the temperature within the chamber to at least 1750.degree. C., introducing an inert gas into the chamber at a pressure less than about 6.9 MPa (1000 psig), and cooling the chamber while maintaining the pressurized atmosphere to a temperature at least below the annealing point of the glass. In the most preferred practice, a green body of silica particulates will be prepared via a sol-gel process.
Abstract:
A method of manufacturing distributed index optical elements is disclosed. The method comprises a step of preparing silica sol including at least one of metal dopants, a step of dipping, after subjecting the silica sol to a gelling treatment, the silica gel in an elute into which a part of metal constituents other than silicon including in the gel is selectively eluted, and a step of drying and sintering the silica gel.
Abstract:
This invention relates to the production of high purity fused silica glass through oxidation or flame hydrolysis of a vaporizable silicon-containing compound. More particularly, this invention is directed to the use of vaporizable, halide-free compounds in said production. In the preferred practice, a polymethylsiloxane comprises said vaporizable, halide-free compound.