Abstract:
A nonionic surfactant composition including: a nonionic surfactant that contains a molecule having a C10-C22 alkyl group and/or alkenyl group as a hydrophobic group, a polyoxyalkylene chain as a hydrophilic group, no aromatic ring, no C9-C14 alkyl group derived from an alcohol that is produced from a higher olefin derived from a mixture of propylene and butene through an oxo process, and no C13 alkyl group derived from an alcohol that is produced from a higher olefin derived from a propylene tetramer through an oxo process. The nonionic surfactant has a hydrodynamic radius of 5.0 to 8.0 nm at 40° C. in an aqueous solution in which a nonionic surfactant concentration is 0.1 kg/L in the nonionic surfactant composition, the radius being measured by a dynamic light scattering method.
Abstract:
To provide a process for producing a powder coating material capable of forming a cured film which is excellent in weather resistance and which has few voids (gaps); a coated article having such a cured film; and a method for producing a carboxy group-containing fluororesin less susceptible to gelation. A process for producing a powder coating material containing a powder (X) composed of a composition (a) comprising a fluororesin (A) having carboxy groups, or alkoxysilyl groups and urethane bonds, and a curing agent (D), said process comprising (a) a step of melt-kneading a mixture comprising a hydroxy group-containing fluororesin (B), an acid anhydride (C1) or a compound (C2) having an alkoxysilyl group and an isocyanate group, and the curing agent (D), to obtain a kneaded product composed of the composition (α), and (b) a step of pulverizing the kneaded product to obtain the powder (X).
Abstract:
A nonionic surfactant composition including: a nonionic surfactant that contains a molecule having a C10-C22 alkyl group and/or alkenyl group as a hydrophobic group, a polyoxyalkylene chain as a hydrophilic group, no aromatic ring, no C9-C14 alkyl group derived from an alcohol that is produced from a higher olefin derived from a mixture of propylene and butene through an oxo process, and no C13 alkyl group derived from an alcohol that is produced from a higher olefin derived from a propylene tetramer through an oxo process. The nonionic surfactant has a hydrodynamic radius of 5.0 to 8.0 nm at 40° C. in an aqueous solution in which a nonionic surfactant concentration is 0.1 kg/L in the nonionic surfactant composition, the radius being measured by a dynamic light scattering method.
Abstract:
Provided is a composition for forming a protective film using a polymer having an imide group: that is cured under a film-forming condition not only in the air but in an inert gas; that can form a protective film having excellent heat resistance, embedding and planarization ability for a pattern formed on a substrate, and good adhesiveness to the substrate; and that can form a protective film having excellent resistance against an alkaline aqueous hydrogen peroxide. A composition for forming a protective film against an alkaline aqueous hydrogen peroxide, the composition including: (A) a polymer having a repeating unit represented by the following general formula (1A) and having at least one or more fluorine atoms and at least one or more hydroxy groups, a terminal group thereof is a group of any one of the following general formulae (1B) and (1C); and (B) an organic solvent,
wherein R1 represents any one group represented by the following formula (1D), and two or more kinds of R1 are optionally used in combination.
Abstract:
A polyamideimide resin composition containing: (A) a polyamideimide resin which has isocyanate groups at the terminals and in which at least a portion of the isocyanate groups are blocked with a blocking agent selected from the group consisting of alcohols, oximes and lactams, (B) N-formylmorpholine, and (C) water.
Abstract:
The invention provides a novel composition capable of providing a film or coat exhibiting excellent adhesiveness to a water-impermeable sheet and to an EVA encapsulant layer even without corona discharge treatment. The composition of the invention contains a fluorine-containing polymer and a polyol compound having a hydroxyl value of 10 to 300. The polyol compound is contained in an amount of not less than 0.1 mass % but less than 100 mass % relative to the fluorine-containing polymer.
Abstract:
A manufacturing method for a thermal balancing conductive coating includes steps as: a) providing gluey liquid mixed by a first solution and a compound substance with a weight ratio ranging from 1:0.6 to 1:1.4; the compound substance is selected from a group consisting of fluorocarbon resin, fluororesin, acrylic acid resin, polyurethane, polyurea resin, unsaturated polyester, silicon resin, and mixtures thereof; b) providing a filler material mixed by a second solution and a filler substance with a weight ratio ranging from 1:0.1 to 1:0.6 and another weight ratio of the compound substance to the filler substance from 1:0.3 to 1:0.8; the filler substance includes a main ingredient selected from a group consisting of graphite, graphene platelets, graphene, graphite fiber, graphene fiber, BN, mica, and mixtures thereof; c)mixing the gluey liquid and the filler material to produce a thermal balancing conductive material, so as to form a thermal balancing conductive coating.
Abstract:
Described herein is a method of manufacturing a fuser member. The method includes mixing a high load fluoropolymer/carbon nanotube composition in a high shear mixer. The method includes mixing the high load fluoropolymer/carbon nanotube composition in the high shear mixer for 3 or more times. A fluoropolymer is added to the high load fluoropolymer/carbon nanotube composition to form a low load fluoropolymer/carbon nanotube composition. The low load fluoropolymer/carbon nanotube composition is mixed in a rubber compounding mixer for 3 or more times. The low load fluoropolymer/carbon nanotube composition is coated on a fuser substrate, cured and polished.
Abstract:
The present invention provides a product and a manufacturing process for an aqueous dispersible dendritic polymer with various functionalities, and polymer compositions and polymer formulations comprising such a dendritic polymer. The aqueous dispersible dendritic polymer composition comprises a hydrophilic functional group to allow dispersion in aqueous solvents and improve washability of the polymer, a low surface tension functional group to impart resistance to dirt pick-up and optionally, a curable functional group to allow superior cross-linking capabilities and optionally, a softening functional group to impart flexibility to the composition.
Abstract:
A forming material having a layer on at least one of surfaces of a support substrate material, wherein the layer contains a fluorine-containing compound, and has a 60-degree specular gloss level prescribed in JIS Z8741 (1997 edition) greater than or equal to 60%, and the layer has a surface property with a number of peaks exceeding a root-mean-square roughness (Rq) observed under an atomic force microscope (AFM) greater than or equal to 500 and less than or equal to 1500 per 25 μm2.