Abstract:
An assembly method is provided by orienting a cylinder-head at a first orientation. A first plurality of spring caps and a first plurality of retainer keys are installed into the cylinder-head in the first orientation by a first robot. A first plurality of valves is installed into the cylinder-head in the first orientation by a second robot, into engagement with the first plurality of retainer keys. An end effector is provided with an actuator supported upon an adapter plate. A shaft extends from the actuator with a mating surface to engage a spring cap. Porting is provided through the shaft to convey pressurized air upon a plurality of retainer keys within the spring cap. A plurality of gripper fingers extend from the distal end of the shaft to grip a valve spring while retaining a spring cap between the valve spring and the mating surface of the shaft.
Abstract:
A variable valve lift apparatus of an engine includes a first body rotated at within a preset angle range by rotating a high-speed cam coupled to a camshaft, a second body coupled to the first body or decoupled from the first body and rotated within a preset angle range by rotating a low-cam coupled to the camshaft when the second body is decoupled from the first body, a latching pin provided retractably forward of the first body such that the first body is coupled to or decoupled from the second body, and an actuating unit to retractably actuate the latching pin. The degree of the lift of the valve is variably controlled in two stages of high-speed and low-speed modes through the rotary motion of the high speed cam or low speed cam by coupling or decoupling the first and second bodies to or from each other.
Abstract:
A bearing frame or cylinder head cover of an internal combustion engine may include at least one camshaft mounted therein. The camshaft may be tunnel-mounted in at least two bearing openings arranged along a bearing channel. At least two radial bearings may be arranged on the camshaft, each of the radial bearings having an outer bearing shell. The outer bearing shells of the at least two radial bearings may include different outer diameters, each of the respective outer diameters adapted to be complementary to an inner diameter of the associated bearing opening. The inner diameters of the bearing openings may decrease in a direction of assembly of the camshaft along the bearing channel.
Abstract:
A mechanical system that forms a cam follower or a rocker arm. The mechanical system includes a support element, a pin extending between two opposite ends along a first axis, and a roller mounted on the pin, movable in rotation relative to the pin around the first axis and adapted to roll on a cam. The support element further comprises an insert having holding members supporting the pin ends, provided with cut-outs having a shape complementary to the shape of the pin-ends, for assembling pin with insert by quarter-turn around the first axis. The pin ends each have a flat surface and an external surface. A first dimension of each pin end, measured perpendicularly to the flat surface, between the flat surface and the external surface of the pin end, is higher than half the outer diameter of the pin ends.
Abstract:
To provide workpiece inspection equipment that allows increasing inspection items without increasing the installation space of the inspection equipment as a whole by disposing a plurality of inspection stages around a rotating table for workpiece feeding. Workpiece inspection equipment 20 including a rotating table 21 for workpiece feeding which intermittently rotates with workpiece housing portions 22 provided at a plurality of circumferentially equally divided positions, a workpiece carry-in stage S0 and a workpiece carry-out stage S6 provided at predetermined positions separated in the circumferential direction of the rotating table 21, and a plurality of inspection stages S1 to S5 provided at predetermined circumferential positions of the rotating table between both stages S0 and S6, in which by increasing the number of workpiece housing portions 22 to be provided in the rotating table 21, the number of inspection stages can be increased without increasing the rotating table 21 in diameter.
Abstract:
An engine valve forging system includes a molding forging die having a circular hole stem molding portion continued to a tip end of a head type molding portion, to mold an engine valve by extrusion-forging a material from the head type molding portion to the stem molding portion by an upper die, and a stem guide forging die which is coaxially disposed to communicate with a tip end of the stem molding portion, and has a guide portion for a stem portion of an engine valve extruded from the stem molding portion, and a plurality of stem curve restraining portions having a shape gradually tapering toward a central shaft line from a rear end portion to a tip end portion are formed continuously along the central shaft line of the guide portion in the guide portion, to be capable of manufacturing high-precision engine valves with less stem curve.
Abstract:
The invention relates to a clamping nest for positioning a component on a shaft, and joining it thereto. The component here has a central part with a circular-cylindrical aperture for accommodating the shaft. The clamping nest has a fork-shaped region for accommodating the component, wherein the fork-shaped region comprises a plurality of clamping elements, which secure the angled position of the component within the fork-shaped region. The fork-shaped region also comprises two opposite bearing surfaces, which secure the axial position of the component in a form-fitting manner in both axial directions.
Abstract:
A highly wear-resistant valve seat insert is provided. When an iron-based powder, a hard-particle powder, and a graphite powder are mixed to obtain a mixed powder, for formation of a layer on a valve-contacting face side, the hard-particle powder having an average particle size 15-50 μm, and the iron-based powder having an average particle size 15-50 μm are blended so a matrix part composition after sintering is a composition containing C: 0.3 to 2.0% by mass, one or more kinds selected from Co, Si, Ni, Mo, Cr, Mn, S, W, and V at 70% by mass or less in total, the balance being Fe and unavoidable impurities and a matrix part structure after sintering is a structure which contains hard-particles at from 10 to 65% by mass with respect to a total amount of a layer on a valve-contacting face side and disperses the hard-particles at 1000 particles/mm2 or more.
Abstract translation:提供高度耐磨的阀座插件。 当将铁基粉末,硬质颗粒粉末和石墨粉末混合以获得混合粉末时,为了在阀接触面侧形成层,将平均粒径为15μm的硬质颗粒粉末, 将平均粒径为15〜50μm的铁基粉末混合,烧结后的基体成分组成为含有C:0.3〜2.0质量%的组成,选自Co,Si, Ni,Mo,Cr,Mn,S,W和V总计为70质量%以下,余量为Fe和不可避免的杂质,烧结后的基体部分结构为含有10〜 相对于阀接触面侧的层的总量为65质量%,将硬粒分散在1000个/ mm 2以上。
Abstract:
A surface hardening material being excellent in abrasion resistance and having impact resistance is provided. Provided are: a wear-resistant cobalt-based alloy containing 20.0 to 30.0 mass % of a sum of Mo and/or W, 0.8 to 2.2 mass % of B, 5.0 to 18.0 mass % of Cr, 5.0 mass % or less of a sum of Fe, Ni, Mn, Cu, Si and C, 1.0 mass % or less of Si, and 0.3 mass % or less of C, and the remainder comprising 55.0 to 70.0 mass % of Co and unavoidable impurities; and an engine valve coated with the same.
Abstract:
A universal multi-orientation bracket design for attaching solenoids to a housing of a hydraulically actuated variable valve system. The bracket having at least two sidewalls, an upper cross member, a cupped lower surface and at least one mounting flange. The cupped lower surface is shaped to insert a solenoid main body and gaps included in the side walls for a protruding solenoid connector.